众所周知,通过Bilstm已经可以实现分词或命名实体标注了,同样地单独的CRF也可以很好的实现。既然LSTM都已经可以预测了,为啥要搞一个LSTM+CRF的hybrid model? 因为单独LSTM预测出来的标注可能会出现(I-Organization->I-Person,B-Organization ->I-Person)这样的问题序列。

但这种错误在CRF中是不存在的,因为CRF的特征函数的存在就是为了对输入序列观察、学习各种特征,这些特征就是在限定窗口size下的各种词之间的关系。

将CRF接在LSTM网络的输出结果后,让LSTM负责在CRF的特征限定下,依照新的loss function,学习出新的模型。

基于字的模型标注:

假定我们使用Bakeoff-3评测中所采用的的BIO标注集,即B-PER、I-PER代表人名首字、人名非首字,B-ORG、I-ORG代表组织机构名首字、组织机构名非首字,O代表该字不属于命名实体的一部分

  • B-Person
  • I- Person
  • B-Organization
  • I-Organization
  • O

加入CRF layer对LSTM网络输出结果的影响

为直观的看到加入后的区别我们可以借用网络中的图来表示:其中\(x\)表示输入的句子,包含5个字分别用\(w_1\),\(w_2\),\(w_3\),\(w_4\),\(w_5\)表示

**没有CRF layer的网络示意图 **

含有CRF layer的网络输出示意图

上图可以看到在没有CRF layer的情况下出现了 B-Person->I-Person 的序列,而在有CRF layer层的网络中,我们将 LSTM 的输出再次送入CRF layer中计算新的结果。而在CRF layer中会加入一些限制,以排除可能会出现上文所提及的不合法的情况

CRF loss function

CRF loss function 如下:

Loss Function = \(\frac{P_{RealPath}}{P_1 + P_2 + … + P_N}\)

主要包括两个部分Real path score 和 total path scroe

1、Real path score

\(P_{RealPath}\) =\(e^{S_i}\)

因此重点在于求出:

\(S_i\) = EmissionScore + TransitionScore

EmissionScore=\(x_{0,START}+x_{1,B-Person}+x_{2,I-Person}+x_{3,O}+x_{4,B-Organization}+x_{5,O}+x_{6,END}\)

因此根据转移概率和发射概率很容易求出\(P_{RealPath}\)

2、total score

total scroe的计算相对比较复杂,可参看https://createmomo.github.io/2017/11/11/CRF-Layer-on-the-Top-of-BiLSTM-5/

实现代码(keras版本)

1、搭建网络模型

使用2.1.4版本的keras,在keras版本里面已经包含bilstm模型,但crf的loss function还没有,不过可以从keras contribute中获得,具体可参看:https://github.com/keras-team/keras-contrib

构建网络模型代码如下:

    model = Sequential()
model.add(Embedding(len(vocab), EMBED_DIM, mask_zero=True)) # Random embedding
model.add(Bidirectional(LSTM(BiRNN_UNITS // 2, return_sequences=True)))
crf = CRF(len(chunk_tags), sparse_target=True)
model.add(crf)
model.summary()
model.compile('adam', loss=crf.loss_function, metrics=[crf.accuracy])

2、清洗数据

清晰数据是最麻烦的一步,首先我们采用网上开源的语料库作为训练和测试数据。语料库中已经做好了标记,其格式如下:

月 O

油 O

印 O

的 O

《 O

北 B-LOC

京 I-LOC

文 O

物 O

保 O

存 O

保 O

管 O

语料库中对每一个字分别进行标记,比较包括如下几种:

'O', 'B-PER', 'I-PER', 'B-LOC', 'I-LOC', "B-ORG", "I-ORG"

分别表示,其他,人名第一个,人名非第一个,位置第一个,位置非第一个,组织第一个,非组织第一个

    train = _parse_data(open('data/train_data.data', 'rb'))
test = _parse_data(open('data/test_data.data', 'rb')) word_counts = Counter(row[0].lower() for sample in train for row in sample)
vocab = [w for w, f in iter(word_counts.items()) if f >= 2]
chunk_tags = ['O', 'B-PER', 'I-PER', 'B-LOC', 'I-LOC', "B-ORG", "I-ORG"] # save initial config data
with open('model/config.pkl', 'wb') as outp:
pickle.dump((vocab, chunk_tags), outp) train = _process_data(train, vocab, chunk_tags)
test = _process_data(test, vocab, chunk_tags)
return train, test, (vocab, chunk_tags)

3、训练数据

在处理好数据后可以训练数据,本文中将batch-size=16获得较为高的accuracy(99%左右),进行了10个epoch的训练。

import bilsm_crf_model

EPOCHS = 10
model, (train_x, train_y), (test_x, test_y) = bilsm_crf_model.create_model()
# train model
model.fit(train_x, train_y,batch_size=16,epochs=EPOCHS, validation_data=[test_x, test_y])
model.save('model/crf.h5')

4、验证数据

import bilsm_crf_model
import process_data
import numpy as np model, (vocab, chunk_tags) = bilsm_crf_model.create_model(train=False)
predict_text = '中华人民共和国国务院总理周恩来在外交部长陈毅的陪同下,连续访问了埃塞俄比亚等非洲10国以及阿尔巴尼亚'
str, length = process_data.process_data(predict_text, vocab)
model.load_weights('model/crf.h5')
raw = model.predict(str)[0][-length:]
result = [np.argmax(row) for row in raw]
result_tags = [chunk_tags[i] for i in result] per, loc, org = '', '', '' for s, t in zip(predict_text, result_tags):
if t in ('B-PER', 'I-PER'):
per += ' ' + s if (t == 'B-PER') else s
if t in ('B-ORG', 'I-ORG'):
org += ' ' + s if (t == 'B-ORG') else s
if t in ('B-LOC', 'I-LOC'):
loc += ' ' + s if (t == 'B-LOC') else s print(['person:' + per, 'location:' + loc, 'organzation:' + org])

输出结果如下:

['person: 周恩来 陈毅, 王东', 'location: 埃塞俄比亚 非洲 阿尔巴尼亚', 'organzation: 中华人民共和国国务院 外交部']

源码地址:https://github.com/stephen-v/zh-NER-keras

基于keras的BiLstm与CRF实现命名实体标注的更多相关文章

  1. BiLstm与CRF实现命名实体标注

    众所周知,通过Bilstm已经可以实现分词或命名实体标注了,同样地单独的CRF也可以很好的实现.既然LSTM都已经可以预测了,为啥要搞一个LSTM+CRF的hybrid model? 因为单独LSTM ...

  2. bi-Lstm +CRF 实现命名实体标注

    1. https://blog.csdn.net/buppt/article/details/82227030 (Bilstm+crf中的crf详解,包括是整体架构) 2. 邹博关于CRF的讲解视频 ...

  3. 用CRF做命名实体识别(一)

    用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报 ...

  4. 用CRF做命名实体识别(二)

    用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...

  5. 使用CRF做命名实体识别(三)

    摘要 本文主要是对近期做的命名实体识别做一个总结,会给出构造一个特征的大概思路,以及对比所有构造的特征对结构的影响.先给出我最近做出来的特征对比: 目录 整体操作流程 特征的构造思路 用CRF++训练 ...

  6. PyTorch 高级实战教程:基于 BI-LSTM CRF 实现命名实体识别和中文分词

    前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理 ...

  7. NLP入门(八)使用CRF++实现命名实体识别(NER)

    CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...

  8. Bi-LSTM+CRF在文本序列标注中的应用

    传统 CRF 中的输入 X 向量一般是 word 的 one-hot 形式,前面提到这种形式的输入损失了很多词语的语义信息.有了词嵌入方法之后,词向量形式的词表征一般效果比 one-hot 表示的特征 ...

  9. 【NER】对命名实体识别(槽位填充)的一些认识

    命名实体识别 1. 问题定义 广义的命名实体识别是指识别出待处理文本中三大类(实体类.时间类和数字类).七小类(人名.机构名.地名.日期.货币和百分比)命名实体.但实际应用中不只是识别上述所说的实体类 ...

随机推荐

  1. Linux分区和挂载(mount命令的学习)

    当Windows系统出现问题的时候,可能需要重装系统,这个时候我们往往会使用系统盘将系统重新安装在C盘上,其他盘上的文件都没有受到重装系统的影 响,这就是分区的好处之一.同样,在Linux中也需要分区 ...

  2. linux命令--ldconfig和ldd用法

    一.ldconfig ldconfig是一个动态链接库管理命令,为了让动态链接库为系统所共享,还需运行动态链接库的管理命令--ldconfig. ldconfig 命令的用途,主要是在默认搜寻目录(/ ...

  3. hi3531 SDK 编译 kernel, 修改 参数

    开发环境用户指南上这么写的 3.1 内核源代码 成功安装Hi3531 SDK后,内核源代码已存放于SDK目录下的osdrv/目录中,用户可 直接进入目录进行相关操作. 3.2 配置内核 如果对内核和H ...

  4. Column 'id' in where clause is ambiguous

    1.错误描述 org.hibernate.exception.ConstraintViolationException: error executing work at org.hibernate.e ...

  5. 百度地图JavaScript API经纬度查询-MAP

    百度地图JavaScript API经纬度查询-MAP-ABCDEFGHIJKMHNOPQRSTUVWXYZ: 搜索:<input type="text" size=&quo ...

  6. JavaScript控制输入框中只能输入中文、数字和英文

    1.问题背景 遇到这样一个问题:有一个输入框,要求只能输入中文.数字和英文(即过滤特殊字符串) 2.JS代码 function  checkUsername() { //正则表达式 var reg = ...

  7. HTML5可以省略结束标记的元素

    HTML5可以省略结束标记的元素 1.dd 2.dt 3.li 4.p 5.optgroup 6.option 7.rt 8.rp 9.thread 10.tfoot 11.tr 12.td 13.t ...

  8. 异常-----web.xml文件报错 Multiple annotations found at this line: - cvc-complex-type.2.4.b: The content of element 'welcome-file-list' is not complete. One of '{"http://java.sun.c

    1,检查抬头是不是有问题. <?xml version="1.0" encoding="UTF-8"?><web-app version=&q ...

  9. Python编程核心内容之二——切片、迭代和列表生成式

    Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ 最近太忙啦.很多事情需要自己处理,感觉时间不够用啊~~~~今后,博客更新时间可能会慢下来,哈哈,正所谓"人 ...

  10. Docker学习——Lepus部署

    Lepus部署(基于docker)及mysql慢查询配置 介绍 Lepus是一个由Python+PHP开发的数据库企业级监控系统,可用于MySQL/Oracle/MongoDB/Redis 下载镜像 ...