[NOI2017]游戏
题目描述
http://www.lydsy.com/JudgeOnline/upload/Noi2017D2.pdf
题解
如果说没有x的话,那么每一局只能有两种选择,可以描述为是/非,每条限制也可以描述是x即y。
那么这就是一道经典的2-SAT问题。
现在有了x的限制,但是观察到x的数目很少最多只有8,所以我们可以考虑枚举限制。
注意到其他的地方有两种情况是因为有一种情况被ban了,所以我们考虑枚举2^x枚举该局禁哪个,因为禁A和禁B已经可以包含所有的情况,所以就不用禁C了。
仅为有ban的存在,所以我们在处理限制的时候要注意,如果某个位置连向的位置被ban了,那么直接连x->x‘表示x不合法。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define M 100002
#define N 50002
using namespace std;
char s[N],ss[];
int head[M],st[M],top,low[M],dfn[M],tot,co[M],num,ban[N],jin[N],n;
bool vis[M];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct node{
int x,y,xx,yy;
}b[M];
struct edge{int n,to;}e[M<<];
inline void add(int u,int v){e[++tot].n=head[u];e[tot].to=v;head[u]=tot;}
void tarjan(int u){
vis[u]=;st[++top]=u;low[u]=dfn[u]=++dfn[];
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
++num;int x;
do{
x=st[top];
vis[x]=;
co[x]=num;
top--;
}
while(x!=u);
}
}
int main(){
n=rd();int d=rd();
scanf("%s",s+);
for(int i=;i<=n;++i){
if(s[i]=='x')jin[++jin[]]=i;
else if(s[i]=='a')ban[i]=;
else ban[i]=;
s[i]-='a';
}
int m=rd();
for(int i=;i<=m;++i){
b[i].x=rd();scanf("%s",ss);b[i].xx=ss[]-'A';
b[i].y=rd();scanf("%s",ss);b[i].yy=ss[]-'A';
}
for(int i=;i<(<<d);++i){
for(int j=;j<=jin[];++j){
int x=(i&(<<j-))!=;
if(x)s[jin[j]]=,ban[jin[j]]=;
else s[jin[j]]=,ban[jin[j]]=;
}
memset(head,,sizeof(head));tot=;
for(int j=;j<=m;++j){
if(s[b[j].x]==b[j].xx)continue;
int nowx,nowy,antix,antiy;
nowx=(b[j].xx==ban[b[j].x])?b[j].x:b[j].x+n;antix=nowx<=n?nowx+n:nowx-n;
if(s[b[j].y]==b[j].yy){
add(nowx,antix);continue;
}
nowy=(b[j].yy==ban[b[j].y])?b[j].y:b[j].y+n;antiy=nowy<=n?nowy+n:nowy-n;
add(nowx,nowy);
add(antiy,antix);
}
memset(dfn,,sizeof(dfn));num=;
for(int j=;j<=n*;++j)if(!dfn[j])tarjan(j);
bool ta=;
for(int j=;j<=n;++j)if(co[j]==co[j+n]){ta=;break;}
if(ta)continue;
for(int j=;j<=n;++j)if(co[j]<co[j+n]){
if(ban[j]==)printf("B");
else printf("A");
}
else{
if(ban[j]==)printf("C");
else if(s[j]==)printf("C");else printf("B");
}
return ;
}
printf("-1");
return ;
}
[NOI2017]游戏的更多相关文章
- P3825 [NOI2017]游戏
题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...
- 【BZOJ4945】[Noi2017]游戏 2-SAT
[BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...
- [Luogu P3825] [NOI2017] 游戏 (2-SAT)
[Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...
- bzoj3825 NOI2017 游戏
题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用一张地 ...
- [NOI2017]游戏(2-SAT)
这是约半年前写的题解了,就搬过来吧 感觉这是NOI2017最水的一题(当然我还是不会2333),因为是一道裸的2-SAT.我就是看着这道题学的2-SAT 算法一:暴力枚举.对于abc二进制枚举,对于x ...
- NOI2017 [NOI2017]游戏 【2-sat】
题目 题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用 ...
- bzoj 4945: [Noi2017]游戏
Description Solution 首先我们发现一个位置如果不是 \('x'\),那么就只有两种选择 而 \('x'\) 的个数小于等于 \(8\),直接枚举是哪个就好了 然后就是 \(2-sa ...
- 洛谷3825 [NOI2017]游戏 2-sat
原文链接http://www.cnblogs.com/zhouzhendong/p/8146041.html 题目传送门 - 洛谷3825 题解 我们考虑到地图中x的个数很少,最多只有8个. 所以我们 ...
- Luogu3825 NOI2017 游戏 2-SAT
传送门 第一眼看上去似乎是一个3-SAT问题 然而\(d \leq 8\)给我们的信息就是:暴力枚举 枚举\(x\)型地图变成\(a\)型地图还是\(b\)型地图(实际上不要枚举\(c\),因为\(a ...
随机推荐
- js 获取上传视频的时长、大小、后缀名
参考资料:获取时长 var fileName = $("#sectionfileUpload").val(); //C:\fakepath\3.jpeg var exts = fi ...
- tomcat 控制台中文乱码问题
1.找到${CATALINA_HOME}/conf/logging.properties2.添加语句:java.util.logging.ConsoleHandler.encoding = GBK 3 ...
- Ubuntu16.04安装Qt5.12.2
第一步:下载文件 https://download.qt.io/official_releases/qt/5.12/5.12.2/ 第二步:安装依赖库 sudo apt-get install bui ...
- C++系列总结——封装
前言 众所周知,封装.继承和多态是面向对象编程的三大特性.C++作为一门面向对象的编程语言,自然支持了这些特性,但C++是如何实现这些特性的呢?今天先说下我理解的封装. 封装 通常我们会把下面的行为也 ...
- vue中的tab栏切换内容变换
<!DOCTYPE html> <html lang="cn-zh"> <head> <meta charset="UTF-8& ...
- CSS3文字与字体 text-overflow 与 word-wrap
text-overflow 对象内的文本溢出部分采用省略“...”标记 或者 剪切: text-overflow:elip(超出容器边界的内容剪切掉) | ellipsis(超出容器边界内容省略标示 ...
- Skyline基本操作模式封装
skyline基本操作模式 项目中基于skyline的浏览器插件进行二次开发,基本的业务操作模式如下: 工具栏:点击工具栏某个功能,开启操作模式. onFrame:鼠标移动预选对象,在能够拾取或者选定 ...
- 46.Odoo产品分析 (五) – 定制板块(2) – 为业务自定义odoo(1)
查看Odoo产品分析系列--目录 在这一章节中,将学习到如何设置"开发者模式"以及备份数据库:然后学习如何添加字段到数据库并在表单和视图中显示. 1 了解odoo的构架 每一个应用 ...
- JVM内存结构,运行机制
三月十号,白天出去有事情出去了一天,晚上刚到食堂就接到阿里电话, 紧张到不行,很多基础的问题都不知道从哪里说了orz: 其中关于JVM内存结构,运行机制,自己笔记里面有总结的,可当天还是一下子说不出来 ...
- (二)图数据neo4j基本认识
1.neo4j介绍 Neo4j是由Java和Scala实现的开源NoSQL图数据库.自2003年开始研发,直到2007年正式发布第一版.Neo4j的源代码托管在GitHub上,技术支持托管在Stack ...