逻辑回归&线性支持向量机
代码:
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 17 10:13:20 2018 @author: zhen
""" from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import mglearn
import matplotlib.pyplot as plt x, y = mglearn.datasets.make_forge() fig, axes = plt.subplots(1, 2, figsize=(10,3))
# 线性支持向量机与逻辑回归进行比较
for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
clf = model.fit(x, y)
mglearn.plots.plot_2d_separator(clf, x, fill=False, eps=0.5, ax=ax, alpha=0.7)
mglearn.discrete_scatter(x[:, 0], x[:, 1], y, ax=ax)
ax.set_title("{}".format(clf.__class__.__name__))
ax.set_xlabel("Feature 0")
ax.set_ylabel("Feature 1")
axes[0].legend() #
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer() x_train, x_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=42)
# 使用默认配置参数
log_reg = LogisticRegression().fit(x_train, y_train) print("="*25+"逻辑回归(C=1)"+"="*25)
print("Training set score:{:.3f}".format(log_reg.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg.score(x_test, y_test))) # 使用配置参数C=100
log_reg_100 = LogisticRegression(C=100).fit(x_train, y_train) print("="*25+"逻辑回归(C=100)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_100.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_100.score(x_test, y_test))) # 使用配置参数C=0.01
log_reg_001 = LogisticRegression(C=0.01).fit(x_train, y_train) print("="*25+"逻辑回归(C=0.01)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_001.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_001.score(x_test, y_test)))
print("="*25+"逻辑回归&线性支持向量机"+"="*25)
# 可视化
fig, axes = plt.subplots(1, 1, figsize=(10,3))
plt.plot(log_reg.coef_.T, 'o', label="C=1")
plt.plot(log_reg_100.coef_.T, '^', label="C=100")
plt.plot(log_reg_001.coef_.T, 'v', label="C=0.01")
plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1]) plt.ylim(-5, 5) plt.xlabel("Cofficient indes")
plt.ylabel("Cofficient magnitude") plt.legend()
结果:
逻辑回归&线性支持向量机的更多相关文章
- 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...
- 逻辑回归(LR)和支持向量机(SVM)的区别和联系
1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结. 2. LR和 ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- 100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 逻辑回归 vs 决策树 vs 支持向量机(I)
原文链接:http://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part1/ 分类问题是我们在各个行业的商业业务中遇到 ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- 关于逻辑回归是否线性?sigmoid
from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线 ...
- 逻辑回归 vs 决策树 vs 支持向量机(II)
原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一 ...
- 线性、逻辑回归的java实现
线性回归和逻辑回归的实现大体一致,将其抽象出一个抽象类Regression,包含整体流程,其中有三个抽象函数,将在线性回归和逻辑回归中重写. 将样本设为Sample类,其中采用数组作为特征的存储形式. ...
随机推荐
- 【SQL Server】利用游标将学生表中的成绩转化为绩点
软件工程综合实践第一次作业 代码来源:班上同学的数据库大作业 alter table sc add GPA float; --加入绩点列 alter table sc ,);--将表按原始位置顺序编号 ...
- Windows Server 2016-Windows 时间服务概览
同步 Windows 时间服务 (W32Time) 的日期和时间的所有运行 Active Directory 域服务 (AD DS) 的计算机. 时间同步至关重要的许多 Windows 服务和的业务线 ...
- Taurus.MVC 2.3 开源发布:增强属性Require验证功能,自带WebAPI文档生成功能
背景: 上周,把 Taurus.MVC 在 Linux (CentOS7) 上部署任务完成后. 也不知怎么的,忽然就想给框架集成一下WebAPI文档功能,所以就动手了. 以为一天能搞完,结果,好几天过 ...
- 神奇的选择器 :focus-within
CSS 的伪类选择器和伪元素选择器,让 CSS 有了更为强大的功能. 伪类大家听的多了,伪元素可能听到的不是那么频繁,其实 CSS 对这两个是有区分的. 有个错误有必要每次讲到伪类都提一下,有时你会发 ...
- 从壹开始前后端分离【 .NET Core2.0 +Vue2.0 】框架之九 || 依赖注入IoC学习 + AOP界面编程初探
更新 1.如果看不懂本文,或者比较困难,先别着急问问题,我单写了一个关于依赖注入的小Demo,可以下载看看,多思考思考注入的原理: https://github.com/anjoy8/BlogArti ...
- 用ASP.NET Core 2.0 建立规范的 REST API -- DELETE, UPDATE, PATCH 和 Log
本文所需的一些预备知识可以看这里: http://www.cnblogs.com/cgzl/p/9010978.html 和 http://www.cnblogs.com/cgzl/p/9019314 ...
- 使用 ASP.NET Core MVC 创建 Web API(三)
使用 ASP.NET Core MVC 创建 Web API 使用 ASP.NET Core MVC 创建 Web API(一) 使用 ASP.NET Core MVC 创建 Web API(二) 十 ...
- Node.js学习(第一章:Node.js安装和模块化理解)
Node.js安装和简单使用 安装方法 简单的安装方式是直接官网下载,然后本地安装即可.官网地址:nodejs.org Windows系统下,选择和系统版本匹配的.msi后缀的安装文件.Mac OS ...
- spring boot 集成 zookeeper 搭建微服务架构
PRC原理 RPC 远程过程调用(Remote Procedure Call) 一般用来实现部署在不同机器上的系统之间的方法调用,使得程序能够像访问本地系统资源一样,通过网络传输去访问远程系统资源,R ...
- SQL优化 MySQL版 - 索引分类、创建方式、删除索引、查看索引、SQL性能问题
SQL优化 MySQL版 - 索引分类.创建方式.删除索引.查看索引.SQL性能问题 作者 Stanley 罗昊 [转载请注明出处和署名,谢谢!] 索引分类 单值索引 单的意思就是单列的值,比如说有 ...