逻辑回归&线性支持向量机
代码:
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 17 10:13:20 2018 @author: zhen
""" from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import mglearn
import matplotlib.pyplot as plt x, y = mglearn.datasets.make_forge() fig, axes = plt.subplots(1, 2, figsize=(10,3))
# 线性支持向量机与逻辑回归进行比较
for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
clf = model.fit(x, y)
mglearn.plots.plot_2d_separator(clf, x, fill=False, eps=0.5, ax=ax, alpha=0.7)
mglearn.discrete_scatter(x[:, 0], x[:, 1], y, ax=ax)
ax.set_title("{}".format(clf.__class__.__name__))
ax.set_xlabel("Feature 0")
ax.set_ylabel("Feature 1")
axes[0].legend() #
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer() x_train, x_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=42)
# 使用默认配置参数
log_reg = LogisticRegression().fit(x_train, y_train) print("="*25+"逻辑回归(C=1)"+"="*25)
print("Training set score:{:.3f}".format(log_reg.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg.score(x_test, y_test))) # 使用配置参数C=100
log_reg_100 = LogisticRegression(C=100).fit(x_train, y_train) print("="*25+"逻辑回归(C=100)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_100.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_100.score(x_test, y_test))) # 使用配置参数C=0.01
log_reg_001 = LogisticRegression(C=0.01).fit(x_train, y_train) print("="*25+"逻辑回归(C=0.01)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_001.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_001.score(x_test, y_test)))
print("="*25+"逻辑回归&线性支持向量机"+"="*25)
# 可视化
fig, axes = plt.subplots(1, 1, figsize=(10,3))
plt.plot(log_reg.coef_.T, 'o', label="C=1")
plt.plot(log_reg_100.coef_.T, '^', label="C=100")
plt.plot(log_reg_001.coef_.T, 'v', label="C=0.01")
plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1]) plt.ylim(-5, 5) plt.xlabel("Cofficient indes")
plt.ylabel("Cofficient magnitude") plt.legend()
结果:



逻辑回归&线性支持向量机的更多相关文章
- 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...
- 逻辑回归(LR)和支持向量机(SVM)的区别和联系
1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结. 2. LR和 ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- 100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 逻辑回归 vs 决策树 vs 支持向量机(I)
原文链接:http://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part1/ 分类问题是我们在各个行业的商业业务中遇到 ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- 关于逻辑回归是否线性?sigmoid
from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线 ...
- 逻辑回归 vs 决策树 vs 支持向量机(II)
原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一 ...
- 线性、逻辑回归的java实现
线性回归和逻辑回归的实现大体一致,将其抽象出一个抽象类Regression,包含整体流程,其中有三个抽象函数,将在线性回归和逻辑回归中重写. 将样本设为Sample类,其中采用数组作为特征的存储形式. ...
随机推荐
- 金三银四,如何征服面试官,拿到Offer
又到了茶余饭后的时间,想想写点什么,掐指一算,噢呦,快到3月份了,职场的金三银四跳槽季又来了,不同的是今年比往年「冷」一些,形式更加严峻一些,大家多多少少可能都听到或看到一些信息,就是好多公司在优化裁 ...
- Android 切换横竖屏
一个项目一般会自己先定义项目是横屏还是竖屏但是也有可以横屏和竖屏之间切换的activty. 切换横竖屏的方法: //判断当前屏幕方向if(getRequestedOrientation() == Ac ...
- Lnmp一键脚本
#!/bin/bash #================================================================ # Copyright (C) 2018 A ...
- python3 购物车
今天干了啥?喂了喂龟,看了看鱼... 然后就是学习了两个模块:sys模块和os模块,突然觉得python真的好,只要英语学的好,看代码超级舒服的说,嗯,我要好好学英语,今天背了几个啥,唉.写完博客再背 ...
- 找不到servlet对应的class
javax.servlet.ServletException: Wrapper cannot find servlet class com.suntomor.lewan.pay.NotifyRecei ...
- 5.Flask-Migrate
1.1.项目结构重构 (1)config.py DB_URI = "mysql+pymysql://root:123456@127.0.0.1:3306/flask_migrate?char ...
- Spring Cloud微服务系列文,Hystrix与Eureka的整合
和Ribbon等组件一样,在项目中,Hystrix一般不会单独出现,而是会和Eureka等组件配套出现.在Hystrix和Eureka整合后的框架里,一般会用到Hystrix的断路器以及合并请求等特性 ...
- C#版 - Leetcode49 - 字母异位词分组 - 题解
C#版 - Leetcode49 - 字母异位词分组 - 题解 Leetcode49.Group Anagrams 在线提交: https://leetcode.com/problems/group- ...
- 限定项目的 Node.js 版本
限定项目运行所需的 Node.js 版本可保证项目在一个稳定可预期的环境中运行,减少不必要的故障.甚至有些依赖库只能工作于某些版本下.同时,不加以限制的话,在多人合作的项目中恐怕会引起环境不一致带来的 ...
- java~springboot~gradle里的docker集成
在springboot里,我们的task任务可以添加docker构建的功能,在gradle集成环境里,直接可以实现编译,测试,打包镜像的流水线作业,很是方便! 下面分享给大家,在gradle里添加do ...