Luogu2045 方格取数加强版
题目描述
给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大
输入输出格式
输入格式:
第一行两个数n,k(1<=n<=50, 0<=k<=10)
接下来n行,每行n个数,分别表示矩阵的每个格子的数
输出格式:
一个数,为最大和
输入输出样例
输入样例#1:
3 1
1 2 3
0 2 1
1 4 2
输出样例#1:
11
说明
每个格子中的数不超过1000
把每个点拆成两个
一条连容量为INF,费用为0的边
一条连容量为1,费用为权值相反数的边
然后跑最小费用最大流k次
把数组开大就过了
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
# define ID(a, b) n * (a - 1) + b
using namespace std;
typedef long long ll;
const int _(5010), __(1e7 + 10), INF(2147483647);
IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, k, fst[_], nxt[__], to[__], cnt, w[__], cost[__];
int S, T, max_flow, max_cost, dis[_], pv[_], pe[_], vis[_];
queue <int> Q;
IL void Add(RG int u, RG int v, RG int f, RG int co){
cost[cnt] = co; w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
cost[cnt] = -co; w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
}
IL bool Bfs(){
Fill(dis, 127); dis[S] = 0; vis[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e])
if(w[e] && dis[to[e]] > dis[u] + cost[e]){
dis[to[e]] = dis[u] + cost[e];
pe[to[e]] = e; pv[to[e]] = u;
if(!vis[to[e]]) vis[to[e]] = 1, Q.push(to[e]);
}
vis[u] = 0;
}
if(dis[T] >= dis[T + 1]) return 0;
RG int ret = INF;
for(RG int u = T; u != S; u = pv[u]) ret = min(ret, w[pe[u]]);
max_cost -= ret * dis[T]; max_flow += ret;
for(RG int u = T; u != S; u = pv[u]) w[pe[u]] -= ret, w[pe[u] ^ 1] += ret;
return 1;
}
int main(RG int argc, RG char* argv[]){
Fill(fst, -1); n = Read(); k = Read();
S = 1; T = 2 * n * n;
for(RG int i = 1; i <= n; ++i)
for(RG int j = 1, a; j <= n; ++j){
a = Read(); RG int t = ID(i, j);
Add(t, t + n * n, 1, -a); Add(t, t + n * n, INF, 0);
if(i < n) Add(t + n * n, ID(i + 1, j), INF, 0);
if(j < n) Add(t + n * n, ID(i, j + 1), INF, 0);
}
while(k--) Bfs();
printf("%d\n", max_cost);
return 0;
}
Luogu2045 方格取数加强版的更多相关文章
- Luogu2045 方格取数加强版(K取方格数) 费用流
题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...
- P2045 方格取数加强版
P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...
- [luogu_P2045]方格取数加强版
[luogu_P2045]方格取数加强版 试题描述 给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1 ...
- 题解【luogu2045 方格取数游戏加强版】
Description 给出一个 \(n*n\) 的矩阵,每一格有一个非负整数 \(A_{i,j}\) ,(\(A_{i,j} <= 1000\))现在从 \((1,1)\) 出发,可以往右或者 ...
- 洛谷 P2045 方格取数加强版【费用流】
题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...
- P2045 方格取数加强版 最大费用最大流
$ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...
- poj 3422 洛谷P2045 K取方格数(方格取数加强版)
Description: 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来 ...
- [洛谷P2045]方格取数加强版
题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...
- 洛谷 - P2045 - 方格取数加强版 - 费用流
原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...
随机推荐
- linux 管理权限
linux 管理权限 linux 文件 权限 1.使用 ls -l 命令 执行结果如下(/var/log) : drwxr-x--- 2 root adm 4096 2013-08-07 11:03 ...
- Nginx location配置详细解释
nginx location配置详细解释 语法规则: location [=|~|~*|^~] /uri/ { - } = 开头表示精确匹配 ^~ 开头表示uri以某个常规字符串开头,理解为匹配 ur ...
- C#中await和async关键字的简单理解
C# 5.0之后,为了简化异步编程,引入了异步函数的概念,也就是方法标记async,然后可以使用await表达式来等待异步操作返回. await关键字看起来是一个阻塞线程的调用,但是实际上执行到awa ...
- service不死之身
为了应用常驻后台,避免被第三方杀掉的方法 1)Service设置成START-STICKY kill 后会被重启(等待5秒左右),重传Intent,保持与重启前一样 2)通过startForegrou ...
- 《android开发艺术探索》读书笔记(八)--WindowManager
接上篇<android开发艺术探索>读书笔记(七)--动画 No1: Window是一个抽象类,它的具体实现是PhoneWindow.创建一个Window是很简单的事,只需要通过Windo ...
- 《android开发艺术探索》读书笔记(三)--分发机制和滑动冲突
接上篇<android开发艺术探索>读书笔记(二) No1: 通过MotionEvent对象可以得到点击事件发生的x和y坐标,getX/getY返回的是相对于当前View左上角的x和y坐标 ...
- hihoCoder 1044 : 状态压缩·一 状压dp
思路:状态压缩,dp(i, j)表示考虑前i个数且[i-m+1, i]的选择情况为j.如果要选择当前这个数并且,数位1的个数不超过q,则dp[i+1][nex] = max(dp[i+1][nex], ...
- Android设置View抖动动画
在应用中,有时候我们要吸引用户去点击某些按钮,比如应用市场的推荐按钮,为了能够吸引用户主动点击而且不过分的打扰用户,最好的方法就是给我们想吸引用户注意的view添加一些抖动动画,比如这张图 这里我主要 ...
- GAN︱GAN 在 NLP 中的尝试、困境、经验
GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响,但是这么好的理论是否可以成功地被应用到自然语言处理(NLP)任务呢? Ian Goodfellow 博士 一年前,网友 ...
- SM4密码算法(附源码)
SM4是我们自己国家的一个分组密码算法,是国家密码管理局于2012年发布的.网址戳→_→:http://www.cnnic.NET.cn/jscx/mixbz/sm4/ 具体的密码标准和算法官方有非常 ...