题目描述

给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大

输入输出格式

输入格式:

第一行两个数n,k(1<=n<=50, 0<=k<=10)
接下来n行,每行n个数,分别表示矩阵的每个格子的数

输出格式:

一个数,为最大和

输入输出样例

输入样例#1:

3 1
1 2 3
0 2 1
1 4 2

输出样例#1:

11

说明

每个格子中的数不超过1000


把每个点拆成两个
一条连容量为INF,费用为0的边
一条连容量为1,费用为权值相反数的边
然后跑最小费用最大流k次
把数组开大就过了


# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
# define ID(a, b) n * (a - 1) + b
using namespace std;
typedef long long ll;
const int _(5010), __(1e7 + 10), INF(2147483647); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k, fst[_], nxt[__], to[__], cnt, w[__], cost[__];
int S, T, max_flow, max_cost, dis[_], pv[_], pe[_], vis[_];
queue <int> Q; IL void Add(RG int u, RG int v, RG int f, RG int co){
cost[cnt] = co; w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
cost[cnt] = -co; w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
} IL bool Bfs(){
Fill(dis, 127); dis[S] = 0; vis[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e])
if(w[e] && dis[to[e]] > dis[u] + cost[e]){
dis[to[e]] = dis[u] + cost[e];
pe[to[e]] = e; pv[to[e]] = u;
if(!vis[to[e]]) vis[to[e]] = 1, Q.push(to[e]);
}
vis[u] = 0;
}
if(dis[T] >= dis[T + 1]) return 0;
RG int ret = INF;
for(RG int u = T; u != S; u = pv[u]) ret = min(ret, w[pe[u]]);
max_cost -= ret * dis[T]; max_flow += ret;
for(RG int u = T; u != S; u = pv[u]) w[pe[u]] -= ret, w[pe[u] ^ 1] += ret;
return 1;
} int main(RG int argc, RG char* argv[]){
Fill(fst, -1); n = Read(); k = Read();
S = 1; T = 2 * n * n;
for(RG int i = 1; i <= n; ++i)
for(RG int j = 1, a; j <= n; ++j){
a = Read(); RG int t = ID(i, j);
Add(t, t + n * n, 1, -a); Add(t, t + n * n, INF, 0);
if(i < n) Add(t + n * n, ID(i + 1, j), INF, 0);
if(j < n) Add(t + n * n, ID(i, j + 1), INF, 0);
}
while(k--) Bfs();
printf("%d\n", max_cost);
return 0;
}

Luogu2045 方格取数加强版的更多相关文章

  1. Luogu2045 方格取数加强版(K取方格数) 费用流

    题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...

  2. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  3. [luogu_P2045]方格取数加强版

    [luogu_P2045]方格取数加强版 试题描述 给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1 ...

  4. 题解【luogu2045 方格取数游戏加强版】

    Description 给出一个 \(n*n\) 的矩阵,每一格有一个非负整数 \(A_{i,j}\) ,(\(A_{i,j} <= 1000\))现在从 \((1,1)\) 出发,可以往右或者 ...

  5. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  6. P2045 方格取数加强版 最大费用最大流

    $ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...

  7. poj 3422 洛谷P2045 K取方格数(方格取数加强版)

    Description: 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来 ...

  8. [洛谷P2045]方格取数加强版

    题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...

  9. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

随机推荐

  1. 企业级docker仓库Harbor部署

    1.安装环境下载离线安装包地址https://github.com/vmware/harbor/releases/yum install -y dockerpip install -i https:/ ...

  2. Redmine基础: 邮件配置

    1.用文本编辑器打开 D:\Bitnami\redmine-2.6.5-0\apps\redmine\htdocs\config\configuration.yml 文件,找到以下内容: 2.配置邮件 ...

  3. 工作中代码笔记 -- adb命令篇

    1.抓log方法 (bat文件) mkdir D:\logcatset /p miaoshu=请描述操作:adb logcat -v threadtime > D:\logcat\%miaosh ...

  4. Redis Sentinel 高可用服务搭建

    阅读目录: 关于 Redis 的概念 关于 Redis Sentinel 的概念 搭建 Redis Server(master) 搭建 Redis Server(slave) 搭建 Redis Sen ...

  5. 巧用Dictionary<TKey,TValue>,完成客户需求

    前几天与客户沟通一个项目,客户对其中某个模块提了一个需求. 把从数据库中取出的对物品的统计重新拆分重新统计.鉴于用文字不能清除的表达需求,我将该需求画出来,便于理解. 需求如下图: 就是A,B,C D ...

  6. According to TLD or attribute directive in tag file, attribute value does not accept any expressions报错解决办法

    1.出现原因: 导入的uri由于不是正确的导致这个jstl不支持el的表达式 jstl uri导入错误:   <%@ taglib prefix="c" uri=" ...

  7. SpringBoot Hello World

    本文首发于我的github博客 前言 SpringBoot是Spring MVC升级版,基于『约定优于配置』的原则,快速开发出web程序. 环境 本系列笔记环境如下: Sun JDK1.8.0_20 ...

  8. 《android开发艺术探索》读书笔记(十)--Android的消息机制

    接上篇<android开发艺术探索>读书笔记(九)--四大组件 No1: 消息队列MessageQueue的内部存储结构并不是真正的队列,而是采用单链表的数据结构来存储消息列表,因为单链表 ...

  9. 内置函数--bin() oct() int() hex()

    英文文档: bin(x) Convert an integer number to a binary string. The result is a valid Python expression. ...

  10. java 集合框架(三)Collection

    一.概述 Collection是集合框架的根接口.不同的集合具有不同的特性,比如有的集合可以有重复元素,有的不可以,有的可以排序,有的不可排序,如此等等,而Collection作为集合的根接口,它规范 ...