题目描述

给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大

输入输出格式

输入格式:

第一行两个数n,k(1<=n<=50, 0<=k<=10)
接下来n行,每行n个数,分别表示矩阵的每个格子的数

输出格式:

一个数,为最大和

输入输出样例

输入样例#1:

3 1
1 2 3
0 2 1
1 4 2

输出样例#1:

11

说明

每个格子中的数不超过1000


把每个点拆成两个
一条连容量为INF,费用为0的边
一条连容量为1,费用为权值相反数的边
然后跑最小费用最大流k次
把数组开大就过了


# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
# define ID(a, b) n * (a - 1) + b
using namespace std;
typedef long long ll;
const int _(5010), __(1e7 + 10), INF(2147483647); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k, fst[_], nxt[__], to[__], cnt, w[__], cost[__];
int S, T, max_flow, max_cost, dis[_], pv[_], pe[_], vis[_];
queue <int> Q; IL void Add(RG int u, RG int v, RG int f, RG int co){
cost[cnt] = co; w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
cost[cnt] = -co; w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
} IL bool Bfs(){
Fill(dis, 127); dis[S] = 0; vis[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e])
if(w[e] && dis[to[e]] > dis[u] + cost[e]){
dis[to[e]] = dis[u] + cost[e];
pe[to[e]] = e; pv[to[e]] = u;
if(!vis[to[e]]) vis[to[e]] = 1, Q.push(to[e]);
}
vis[u] = 0;
}
if(dis[T] >= dis[T + 1]) return 0;
RG int ret = INF;
for(RG int u = T; u != S; u = pv[u]) ret = min(ret, w[pe[u]]);
max_cost -= ret * dis[T]; max_flow += ret;
for(RG int u = T; u != S; u = pv[u]) w[pe[u]] -= ret, w[pe[u] ^ 1] += ret;
return 1;
} int main(RG int argc, RG char* argv[]){
Fill(fst, -1); n = Read(); k = Read();
S = 1; T = 2 * n * n;
for(RG int i = 1; i <= n; ++i)
for(RG int j = 1, a; j <= n; ++j){
a = Read(); RG int t = ID(i, j);
Add(t, t + n * n, 1, -a); Add(t, t + n * n, INF, 0);
if(i < n) Add(t + n * n, ID(i + 1, j), INF, 0);
if(j < n) Add(t + n * n, ID(i, j + 1), INF, 0);
}
while(k--) Bfs();
printf("%d\n", max_cost);
return 0;
}

Luogu2045 方格取数加强版的更多相关文章

  1. Luogu2045 方格取数加强版(K取方格数) 费用流

    题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...

  2. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  3. [luogu_P2045]方格取数加强版

    [luogu_P2045]方格取数加强版 试题描述 给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1 ...

  4. 题解【luogu2045 方格取数游戏加强版】

    Description 给出一个 \(n*n\) 的矩阵,每一格有一个非负整数 \(A_{i,j}\) ,(\(A_{i,j} <= 1000\))现在从 \((1,1)\) 出发,可以往右或者 ...

  5. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  6. P2045 方格取数加强版 最大费用最大流

    $ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...

  7. poj 3422 洛谷P2045 K取方格数(方格取数加强版)

    Description: 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来 ...

  8. [洛谷P2045]方格取数加强版

    题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...

  9. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

随机推荐

  1. OpenLayer3调用天地图示例

    最近,工作中有需要用Openlayer3脚本库调用天地图的wmts服务接口,由于这两个都是刚开始接触,所以是摸着石头过河,遇到了地图显示不了的问题,虽然官网http://www.zjditu.cn/r ...

  2. 在Windows下为PHP5.5安装redis扩展

    使用phpinfo()函数查看PHP的版本信息,这会决定扩展文件版本   根据PHP版本号,编译器版本号和CPU架构, 选择php_redis-2.2.5-5.5-ts-vc11-x86.zip和ph ...

  3. 三、scrapy后续

    CrawlSpiders 通过下面的命令可以快速创建 CrawlSpider模板 的代码: scrapy genspider -t crawl tencent tencent.com 我们通过正则表达 ...

  4. java 23种设计模式 深入理解

    以下是学习过程中查询的资料,别人总结的资料,比较容易理解(站在各位巨人的肩膀上,望博主勿究) 创建型抽象工厂模式 http://www.cnblogs.com/java-my-life/archive ...

  5. 基于数据形式说明杜兰特的技术特点的分析(含Python实现讲解部分)

    ---恢复内容开始--- 注: 本博文系原创,转载请标明原处. 题外话:春节过后,回到学校无所事事,感觉整个人都生锈一般,没什么动力,姑且称为"春节后遗症".在科赛官网得到关于NB ...

  6. ubuntu上lamp环境搭建

    首先,介绍个彻底删除linux已经安装的软件的方法. sudo apt-get purge mysql-server mysql-client mysql-common mysql-server-5. ...

  7. the c programing language 学习过程6

    payroll工资名单 hierarchy分层层次 vexing 使人烦恼的 alignment结盟 semantics 语义 aethetic审美 parameterize 参数化 1结构标记 成员 ...

  8. UVA - 11270 轮廓线DP

    其实这题还能用状压DP解决,可是时间达到2000ms只能过掉POJ2411.状压DP解法详见状压DP解POJ2411 贴上POJ2411AC代码 : 2000ms 时间复杂度h*w*(2^w)*(2^ ...

  9. CodeForces - 730A 贪心+模拟

    贪心策略: 1.只有一个最大值,选着第二大的一起参加比赛减分. 2.有奇数个最大值,选择三个进行比赛. 3.偶数个最大值,选择两个进行比赛. 为什么不把最大值全部选择? 因为最多只能选五个,有可能选择 ...

  10. 妙用ES6解构和扩展运算符让你的代码更优雅

    http://www.cnblogs.com/chrischjh/p/4848934.html