题面

\(\sum_{i=1}^{n}\sum_{j=1}^m\gcd(i,j)\mod998244353\)

\(n,m<=10^7\)

Sol

简单的一道莫比乌斯反演题

\(原式=\sum_{d=1}^{n}d*\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i, j)==1]\)

\(设f(i) = \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i, j)==1]\)

\(g(i) = \sum_{i|d} f(d) = \lfloor\frac{\lfloor\frac{n}{d}\rfloor}{i}\rfloor\lfloor\frac{\lfloor\frac{m}{d}\rfloor}{j}\rfloor\)

莫比乌斯反演求出f,用两个数论分块就好了

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1), MOD(998244353); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int prime[_], mu[_], num, s[_];
bool isprime[_]; IL void Prepare(){
isprime[1] = 1; s[1] = mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{ mu[i * prime[j]] = 0; break; }
}
(mu[i] += mu[i - 1]) %= MOD; s[i] = (s[i - 1] + i) % MOD;
}
} IL int Calc(RG ll n, RG ll m){
RG ll f = 0, g;
for(RG ll i = 1, j; i <= n; i = j + 1){
j = min(n / (n / i), m / (m / i));
g = 1LL * (n / i) * (m / i) % MOD;
(f += 1LL * (mu[j] - mu[i - 1] + MOD) % MOD * g % MOD) %= MOD;
}
return f;
} int main(RG int argc, RG char *argv[]){
Prepare();
RG int n = Read(), m = Read(); RG ll ans = 0;
if(n > m) swap(n, m);
for(RG ll d = 1, j; d <= n; d = j + 1){
j = min(n / (n / d), m / (m / d));
(ans += 1LL * (s[j] - s[d - 1] + MOD) % MOD * Calc(n / d, m / d) % MOD) %= MOD;
}
printf("%lld\n", ans);
return 0;
}

【UVA 11426】gcd之和 (改编)的更多相关文章

  1. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  2. UVA 11426 GCD - Extreme (II) (欧拉函数)题解

    思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...

  3. UVA 11426 GCD - Extreme (II) (数论|欧拉函数)

    题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...

  4. UVA 11426 GCD Extrme (Ⅲ)

    给定一个整数N(1<N<=4000000)的整数求∑GCD(i,j)i=1,2,3....j-1,2<=j<=n的值.参考了一下网上的题解,复述一下我理解后的思路,加深理解: ...

  5. UVa 11426 - GCD - Extreme (II)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  7. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  8. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  9. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  10. UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表

    <训练指南>p.125 设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n); 则所求答案为S[n] = f[2]+f[3]+……+f[n] ...

随机推荐

  1. Ubuntu16.04+Apache虚拟主机配置详解

    在window下,Apache的配置文件是httpd.conf,但在Linux下安装了Apache后发现其配置并不像window下那么简单,Linux下Apache将各个设置项分在了不同的配置文件中, ...

  2. Discuz的安装与使用

    Discuz的安装与使用 一.Discuz的安装 由于本机已经安装好XAMPP集成工具,后续Discuz访问数据库以及服务器等都是基于XAMPP环境.在主机localhost根目录下新建bbs文件夹. ...

  3. configure: error: Bundled APR requested but not found at ./srclib/. Download and unpack the corresponding apr and apr-util packages to ./srclib/.

    Apache在2.4版本以后,编译时: # ./configure \ --prefix=/usr/local/apache2 \ --with-included-apr \ --enable-so ...

  4. NOI2009 二叉查找树 【区间dp】

    [NOI2009]二叉查找树 [问题描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左子树结点的数据值大,而比它右子树结点的数据值小.另一方面,这棵查找树中每个结点都有 ...

  5. Win10 部署 依赖 NET3.5 项目,报错 无法安装 NET3.5 ,该如何解决?

    下载 NetFx3.cab Cab 安装包 拷贝 NetFx3.cab 文件至 C:\Windows 目录 打开命令行窗口(管理员权限) 输入以下内容: dism /online /Enable-Fe ...

  6. Phpstrom操作Git从服务器端克隆代码到本地

    1.第一步点开Git 2.添加项目的路径 第一个框是你所在的项目路径,后缀名是.git,这里我用的是HTTPS的方式(还有一种是SSH) 第二是你要克隆到所在目录,我的是在Apache下面的htdoc ...

  7. redis下载安装以及添加服务

    一.下载安装 从 github 下载:https://github.com/MSOpenTech/redis/releases 或者 https://github.com/ServiceStack/r ...

  8. 网络基础tcp/ip协议三

    数据链路层:(位于网络层与物理层之间) 数据链路层的功能: 数据链路的建立,维护. 帧包装,帧传输,帧同步. 帧的差错恢复. 流量的控制. 以太网:(工作在数据链路层) CSMA/CD(带冲突检测的载 ...

  9. 常用校验码(奇偶校验,海明校验,CRC)学习总结

    常用校验码(奇偶校验,海明校验,CRC)学习总结 一.为什么要有校验码? 因为在数据存取和传送的过程中,由于元器件或者噪音的干扰等原因会出现错误,这个时候我们就需要采取相应的措施,发现并纠正错误,对于 ...

  10. probabilistic robotics_bayes filter

    贝叶斯滤波 执行测量后的后验概率: 执行测量前的先验概率: 执行测量后的后验概率推导 根据式2.23的推导方式 可推出 假定xt是complete,即xt可以完全决定测量结果,那么则有2.56式: 带 ...