题目描述

给定一个由 nn 行数字组成的数字梯形如下图所示。

梯形的第一行有 mm 个数字。从梯形的顶部的 mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。

分别遵守以下规则:

  1. 从梯形的顶至底的 mm 条路径互不相交;

  2. 从梯形的顶至底的 mm 条路径仅在数字结点处相交;

  3. 从梯形的顶至底的 mm 条路径允许在数字结点相交或边相交。

输入输出格式

输入格式:

第 11 行中有 22 个正整数 mm 和 nn,分别表示数字梯形的第一行有 mm 个数字,共有 nn 行。接下来的 nn 行是数字梯形中各行的数字。

第 11 行有 mm 个数字,第 22 行有 m+1m+1 个数字,以此类推。

输出格式:

将按照规则 11,规则 22,和规则 33 计算出的最大数字总和并输出,每行一个最大总和。

输入输出样例

输入样例#1: 复制

2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1
1 1 10 12 1 1
输出样例#1: 复制

66
75
77 首先声明这是一个比较简单的题目,建图什么的也很容易想,不过我就出现了很多莫名其妙的bug,浪费了很多时间。 有一个bug就是我的第一个out的拆点改成了500然后就错了,这个我现在还是没有明白为什么,但是我觉得呢,这个可能有内部我没有考虑到的原因,所以以后要写的规范一点,不要想当然吧。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
#include <map>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = 2e5+;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t, exa[maxn];
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
//printf("%d %d %d %d\n", u, v, c, cost);
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, int & cost)
{
memset(d, 0xef, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] < d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
// printf("d[%d]=%d d[%d]=%d %d d[%d]=%d\n", v,d[v],u, d[u], now.cost,v,d[u]+now.cost);
// printf("%d %d %d %d %d %d\n", u, now.u, now.v, now.c, now.f, now.cost);
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
// printf("a=%d d=%d\n", a[t], d[t]);
if (d[t] < )return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += d[t] * a[t];//距离乘上到达汇点的流量就是费用
// printf("cost=%lld\n", cost);
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int Maxflow(int s, int t, int & cost)
{
cost = ;
int flow = ;
while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
int sum[],cas=;
int n, m;
void out1()
{
init();
int len = n;
for (int i = ; i <= cas; i++) add(i, i + cas, , );//两点之间
for (int i = ; i <= n; i++) add(s, i, , exa[i]);//源点
for(int i=;i<m;i++)
{
for(int j=;j<=len;j++)
{
add(sum[i - ] + j + cas, sum[i] + j, , exa[sum[i] + j]);
add(sum[i - ] + j + cas, sum[i] + j + , , exa[sum[i] + j + ]);
}
len++;
}
for (int i = ; i <= m + n - ; i++) add(sum[m - ] + i + cas, t, , );
int cost = ;
int ans = Maxflow(s, t, cost);
printf("%d\n", cost);
} void out2()
{
init();
int len = n;
for (int i = ; i <= n; i++) add(s, i, , exa[i]);//源点
for (int i = ; i < m; i++)
{
for (int j = ; j <= len; j++)
{
add(sum[i - ] + j, sum[i] + j, , exa[sum[i] + j]);
add(sum[i - ] + j, sum[i] + j + , , exa[sum[i] + j + ]);
}
len++;
}
for (int i = ; i <= m + n - ; i++) add(sum[m - ] + i, t, inf, );
int cost = ;
int ans = Maxflow(s, t, cost);
printf("%d\n", cost);
return;
} void out3()
{
init();
int len = n;
for (int i = ; i <= n; i++) add(s, i, , exa[i]);//源点
for (int i = ; i < m; i++)
{
for (int j = ; j <= len; j++)
{
add(sum[i - ] + j, sum[i] + j, inf, exa[sum[i] + j]);
add(sum[i - ] + j, sum[i] + j + , inf, exa[sum[i] + j + ]);
}
len++;
}
for (int i = ; i <= m + n - ; i++) add(sum[m - ] + i, t, inf, );
int cost = ;
int ans = Maxflow(s, t, cost);
printf("%d\n", cost);
return;
} int main()
{
cin >> n >> m;
s = , t = ;
int len = n;
for(int i=;i<=m;i++)
{
for(int j=;j<=len;j++)
{
cin >> exa[cas];
cas++;
}
len++;
}
sum[] = ;
for(int i=;i<=m;i++) sum[i] = sum[i - ] + n + i - ;
out1();
out2();
out3();
return ;
}

P4013 数字梯形问题 网络流的更多相关文章

  1. P4013 数字梯形问题 网络流二十四题

    P4013 数字梯形问题 题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形 ...

  2. 洛谷P4013数字梯形问题——网络流24题

    题目:https://www.luogu.org/problemnew/show/P4013 最大费用最大流裸题: 注意:在第二种情况中,底层所有点连向汇点的边容量应该为inf,因为可以有多条路径结束 ...

  3. Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)

    Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...

  4. P4013 数字梯形问题

    \(\color{#0066ff}{题目描述}\) 给定一个由 \(n\) 行数字组成的数字梯形如下图所示. 梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可 ...

  5. 洛谷 P4013 数字梯形问题

    ->题目链接 题解: 网络流. #include<cstdio> #include<iostream> #include<queue> #include< ...

  6. 洛谷P4013 数字梯形问题(费用流)

    传送门 两个感受:码量感人……大佬nb…… 规则一:$m$条路径都不相交,那么每一个点只能经过一次,那么考虑拆点,把每一个点拆成$A_{i,j}$和$B_{i,j}$,然后两点之间连一条容量$1$,费 ...

  7. 洛谷P4013 数字梯形问题(费用流)

    题意 $N$行的矩阵,第一行有$M$个元素,第$i$行有$M + i - 1$个元素 问在三个规则下怎么取使得权值最大 Sol 我只会第一问qwq.. 因为有数量的限制,考虑拆点建图,把每个点拆为$a ...

  8. 洛谷 P4013 数字梯形问题【最大费用最大流】

    第一问:因为每个点只能经过一次,所以拆点限制流量,建(i,i',1,val[i]),然后s向第一行建(s,i,1,0),表示每个点只能出发一次,然后最后一行连向汇点(i',t,1,0),跑最大费用最大 ...

  9. luogu P4013 数字梯形问题

    三倍经验,三个条件,分别对应了常见的3种模型,第一种是限制每个点只能一次且无交点,我们可以把这个点拆成一个出点一个入点,capacity为1,这样就限制了只选择一次,第二种是可以有交点,但不能有交边, ...

随机推荐

  1. C语言实现循环队列

    今日在处理数据存储的问题中,数据占用的空间较大,在询问之下,提及循环队列. 没有学习过的我,想想就是头大,只能慢慢从网上找资料,一个字母一个字母的敲,最后,还是慢慢的对队列有了一些理解 对于循环队列有 ...

  2. .NET Core 必备安全措施

    .NET Core大大简化了.NET应用程序的开发.它的自动配置和启动依赖大大减少了开始一个应用所需的代码和配置量,本文目的是介绍如何创建更安全的.NET Core应用程序. 1.在生产中使用HTTP ...

  3. Web Deploy配置及其使用VS进行Web部署

    前言: 因为公司一直比较保守所以一直都使用的是window 2008 R2版本的服务器,所以今天要讲的是在Window 2008 R2下如何配置Web Deploy. Web Deploy介绍: We ...

  4. TCP三次握手和四次挥手的全过程

    三次握手: 第一次握手:客户端发送syn包(syn=x)到服务器,并进入SYN_SEND状态,等待服务器确认:第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个 ...

  5. numpy操作

    python中使用了numpy的一些操作,特此记录下来: 生成矩阵,替换值 import numpy as np # 生成一行10列的矩阵 dataset = np.zeros((1, 10)) # ...

  6. PERL学习笔记---正则表达式

    要匹配某个模式(正则表达式)和$_的关系,可以将模式放在正斜线(//)之间,如下:$_ =“yabba dabba doo”;if(/abba/){print “It matched!\n”;} 表达 ...

  7. 网络学习笔记(一):TCP连接的建立与关闭

      五层网络模型分为:物理层.数据链路层.网络层.传输层.应用层.其中,传输层有两种主要协议:面向连接的TCP(Transmission Control Protocol 传输控制协议).无连接的UD ...

  8. MATLAB程序:用FCM分割脑图像

    MATLAB程序:用FCM分割脑图像 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 脑图像基础知识请看:脑图像:FCM算法介绍请看:聚类——FCM:数据 ...

  9. 还在问跨域?本文记录js跨域的多种实现实例

    前言 众所周知,受浏览器同源策略的影响,产生了跨域问题,那么我们应该如何实现跨域呢?本文记录几种跨域的简单实现 前期准备 为了方便测试,我们启动两个服务,10086(就是在这篇博客自动生成的项目,请戳 ...

  10. mysql 盲注二分法python脚本

    import urllib import urllib2 def doinject(payload): url = 'xxxxxxxxxxxxxxxxxxxxx' values = {'injecti ...