HDU 6222 Heron and His Triangle (pell 方程)
题面(本人翻译)
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers t - 1, t, t + 1 and thatits area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest t bigger
than or equal to n.
一个三角形是 Heron 三角形仅当它的三边长是连续的正整数 t - 1, t, t + 1, 并且面积是正整数。现在,给你一个整数 N ,求大于等于 N 的最小的合法的 t (Heron 三角形的第二小的边)。
Input
The input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).
一个正整数 T 表示数据组数,1 ≤ T ≤ 30000。接下来 T 行每行一个整数 N,1 ≤ N ≤ 10^30。
Output
For each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.
每个数据输出一行,即题意中的最小的 t ,如果没有满足要求的 Heron 三角形,输出 -1。
Sample Input
4
1
2
3
4
Sample Output
4
4
4
4
题解
我们可以用海伦公式表示面积
我们设 x = t/2,y = 2S/t,那么
这是pell方程的形式,所以先手算出最小的解 x=2,y=3,然后我们用pell方程的递推式:
我们会发现X增长得很快,到第52个就超过十的三十次方了,因此我们可以先打个表
X[1] = 4;
X[2] = 14;
X[3] = 52;
X[4] = 194;
X[5] = 724;
X[6] = 2702;
X[7] = 10084;
X[8] = 37634;
X[9] = 140452;
X[10] = 524174;
X[11] = 1956244;
X[12] = 7300802;
X[13] = 27246964;
X[14] = 101687054;
X[15] = 379501252;
X[16] = 1416317954;
X[17] = 5285770564;
X[18] = 19726764302;
X[19] = 73621286644;
X[20] = 274758382274;
X[21] = 1025412242452;
X[22] = 3826890587534;
X[23] = 14282150107684;
X[24] = 53301709843202;
X[25] = 198924689265124;
X[26] = 742397047217294;
X[27] = 2770663499604052;
X[28] = 10340256951198914;
X[29] = 38590364305191604;
X[30] = 144021200269567502;
X[31] = 537494436773078404;
X[32] = 2005956546822746114;
X[33] = 7486331750517906052;
X[34] = 27939370455248878094;
X[35] = 104271150070477606324;
X[36] = 389145229826661547202;
X[37] = 1452309769236168582484;
X[38] = 5420093847118012782734;
X[39] = 20228065619235882548452;
X[40] = 75492168629825517411074;
X[41] = 281740608900066187095844;
X[42] = 1051470266970439230972302;
X[43] = 3924140458981690736793364;
X[44] = 14645091568956323716201154;
X[45] = 54656225816843604128011252;
X[46] = 203979811698418092795843854;
X[47] = 761263020976828767055364164;
X[48] = 2841072272208896975425612802;
X[49] = 10603026067858759134647087044;
X[50] = 39571031999226139563162735374;
X[51] = 147681101929045799118003854452;
X[52] = 551153375716957056908852682434;
X[53] = 2056932400938782428517406875284; // 此处就超过 10^30 了
然后就二分判断就过了。
这题根本就不存在 -1。
CODE
zxy tql %%%%%%
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<bitset>
#include<ctime>
#include<iostream>
#define MAXN 2005
#define LL long long
#define ULL unsigned LL
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#define DB double
//#define bs bitset<1005>
//#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
char char_read_before = 1;
inline int read() {
int f = 1,x = 0;char s = char_read_before;
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
char_read_before = s; return x * f;
}
inline char readchar() {
char s = char_read_before;
while(s == 1 || s == ' ' || s == '\n') s = getchar();
char_read_before = 1; return s;
}
LL zxy = 100000000;
int n,m,i,j,s,o,k;
DB bg;inline DB Time() {return DB(clock() - bg) / CLOCKS_PER_SEC;}
struct Num{
LL s[4];
Num(){s[0]=s[1]=s[2]=s[3]=0;}
Num(int b) {s[0] = b;s[1] = s[2] = s[3] = 0;}
Num operator = (int b) {
s[0] = b;
s[1] = s[2] = s[3] = 0;
return *this;
}
void tl() {
s[0] *= 10;
s[1] = s[1] * 10 + s[0] / zxy;
s[2] = s[2] * 10 + s[1] / zxy;
s[3] = s[3] * 10 + s[2] / zxy;
s[0] %= zxy;
s[1] %= zxy;
s[2] %= zxy;
}
};
inline Num operator *(Num a,Num b) {
Num c;
for(int i = 0;i < 4;i ++) {
LL m = 0;
for(int j = 0;i+j < 4;j ++) {
c.s[i+j] += a.s[i] *1ll* b.s[j] + m;
m = c.s[i+j] / zxy;
c.s[i+j] %= zxy;
}
}return c;
}
inline Num operator +(Num a,Num b) {
LL m = 0;
for(int i=0;i<4;i++) {
a.s[i] += b.s[i] + m;
m = a.s[i] / zxy;
a.s[i] %= zxy;
}return a;
}
inline bool operator < (Num a,Num b) {
if(a.s[3] != b.s[3]) return a.s[3] < b.s[3];
if(a.s[2] != b.s[2]) return a.s[2] < b.s[2];
if(a.s[1] != b.s[1]) return a.s[1] < b.s[1];
return a.s[0] < b.s[0];
}
inline bool operator >= (Num a,Num b) {return !(a < b);}
inline void print(Num a) {
int le = 0;
if(a.s[3]) le = 3;
else if(a.s[2]) le = 2;
else if(a.s[1]) le = 1;
printf("%d",a.s[le]);
while(le --) printf("%08d",a.s[le]);
return ;
}
inline Num readn() {
int f = 1;Num x(0);char s = char_read_before;
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x.tl();x = x + Num(s - '0');s = getchar();}
char_read_before = s; return x;
}
struct mat{
int n,m;
Num s[3][3];
mat(){n=m=0;s[1][1]=s[1][2]=s[2][1]=s[2][2]=Num();}
}A,B;
inline mat operator * (mat a,mat b) {
mat c; c.n = a.n;c.m = b.m;
for(int i=1;i<=c.n;i++)
for(int k=1;k<=a.m;k++)
for(int j=1;j<=c.m;j++)
c.s[i][j] = c.s[i][j] + a.s[i][k] * b.s[k][j];
return c;
}
Num as[100];
signed main() {
bg = clock();
A.n = 1;
A.m = B.n = B.m = 2;
A.s[1][1] = 2;
A.s[1][2] = 3;
B.s[1][1] = 2;
B.s[2][1] = 1;
B.s[1][2] = 3;
B.s[2][2] = 2;
for(int i = 0;i <= 52;i ++) {
as[i] = A.s[1][1] * Num(2);
A = A * B;
}
int T = read();
while(T --) {
Num nn = readn();
int l = 0,r = 52,mid;
while(l < r) {
mid = l + r >> 1;
if(as[mid] >= nn) r = mid;
else l = mid+1;
}
print(as[l]);
ENDL;
}
return 0;
}
HDU 6222 Heron and His Triangle (pell 方程)的更多相关文章
- Heron and His Triangle HDU - 6222(pell 大数)
---恢复内容开始--- Heron and His Triangle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/2 ...
- HDU 2281 Square Number Pell方程
http://acm.hdu.edu.cn/showproblem.php?pid=2281 又是一道Pell方程 化简构造以后的Pell方程为 求出其前15个解,但这些解不一定满足等式,判断后只有5 ...
- Pell方程及其一般形式
一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...
- hdu 3304 Interesting Yang Yui Triangle
hdu 3304 Interesting Yang Yui Triangle 题意: 给出P,N,问第N行的斐波那契数模P不等于0的有多少个? 限制: P < 1000,N <= 10^9 ...
- hdu3293(pell方程+快速幂)
裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others) Memory Limit: ...
- POJ 1320 Street Numbers Pell方程
http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b 要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...
- POJ 2427 Smith's Problem Pell方程
题目链接 : http://poj.org/problem?id=2427 PELL方程几个学习的网址: http://mathworld.wolfram.com/PellEquation.html ...
- Heron and His Triangle HDU - 6222
题目链接:https://vjudge.net/problem/HDU-6222 思路:打表找规律. 然后因为数据范围较大可以考虑用字符串模拟,或者__int128要注意用一个快读快输模板. 1 #i ...
- Heron and His Triangle 2017 沈阳区域赛
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integer ...
随机推荐
- Java实用类-Enum(枚举)
1. 历史 在 JDK 1.5 之前没有枚举类型,那时候一般用接口常量来替代(例如,public static final String male ).JKD1.5之后使用 Java 枚举类型 e ...
- BUUCTF-佛系少年
佛系少年 这题我感觉超扯,不知道当时环境是不是断网的,断网咋解密的出来.. 下载后有个压缩包,带加密的,首先16进制看看是否是真加密 这里可以看到,压缩包数据区这里都是未加密的方式 但是到了压缩包目录 ...
- jenkins部署docker
1. 先在jenkins上配置拉取代码部分,需要在git上找到项目位置,直接复制url即可 http://192.168.0.161:3000/IT-Insurance/Back.Test-Walle ...
- Mybatis中@select注解联合查询
前言 在项目中经常会使用到一些简单的联合查询获取对应的数据信息,我们常规都是会根据对应的mapper接口写对应的mapper.xml的来通过对应的业务方法来调用获取,针对这一点本人感觉有点繁琐,就对@ ...
- iOS OC纯代码企业级项目实战之我的云音乐(持续更新))
简介 这是一个使用OC语言,从0使用纯代码方式开发一个iOS平台,接近企业级商业级的项目(我的云音乐),课程包含了基础内容,高级内容,项目封装,项目重构等知识:主要是讲解如何使用系统功能,流行的第三方 ...
- NC14326 Rails
NC14326 Rails 题目 题目描述 There is a famous railway station in PopPush City. Country there is incredibly ...
- PTA(BasicLevel)-1031 查验身份证
一.问题定义 一个合法的身份证号码由17位地区.日期编号和顺序编号加1位校验码组成.校验码的计算规则如下:首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,1 ...
- github package的使用教程
一.写在前面 上一次,笔者向大家介绍了把gitlab仓库作为npm私包的使用方法,具体的详见我的博文地址https://www.cnblogs.com/cnroadbridge/p/16406476. ...
- Git Rebase操作
概括 rebase翻译过来为"变基",可以理解为改变基础,它可以用于分支合并和修改提交记录. 合并分支的区别 我们知道merge操作也可以用于分支合并,但是其和rebase操作有着 ...
- HDFS、Yarn、Hive…MRS中使用Ranger实现权限管理全栈式实践
摘要:Ranger为组件提供基于PBAC的鉴权插件,供组件服务端运行,目前支持Ranger鉴权的组件有HDFS.Yarn.Hive.HBase.Kafka.Storm和Spark2x,后续会支持更多组 ...