HDU 6222 Heron and His Triangle (pell 方程)
题面(本人翻译)
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers t - 1, t, t + 1 and thatits area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest t bigger
than or equal to n.
一个三角形是 Heron 三角形仅当它的三边长是连续的正整数 t - 1, t, t + 1, 并且面积是正整数。现在,给你一个整数 N ,求大于等于 N 的最小的合法的 t (Heron 三角形的第二小的边)。
Input
The input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).
一个正整数 T 表示数据组数,1 ≤ T ≤ 30000。接下来 T 行每行一个整数 N,1 ≤ N ≤ 10^30。
Output
For each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.
每个数据输出一行,即题意中的最小的 t ,如果没有满足要求的 Heron 三角形,输出 -1。
Sample Input
4
1
2
3
4
Sample Output
4
4
4
4
题解
我们可以用海伦公式表示面积
我们设 x = t/2,y = 2S/t,那么
这是pell方程的形式,所以先手算出最小的解 x=2,y=3,然后我们用pell方程的递推式:
我们会发现X增长得很快,到第52个就超过十的三十次方了,因此我们可以先打个表
X[1] = 4;
X[2] = 14;
X[3] = 52;
X[4] = 194;
X[5] = 724;
X[6] = 2702;
X[7] = 10084;
X[8] = 37634;
X[9] = 140452;
X[10] = 524174;
X[11] = 1956244;
X[12] = 7300802;
X[13] = 27246964;
X[14] = 101687054;
X[15] = 379501252;
X[16] = 1416317954;
X[17] = 5285770564;
X[18] = 19726764302;
X[19] = 73621286644;
X[20] = 274758382274;
X[21] = 1025412242452;
X[22] = 3826890587534;
X[23] = 14282150107684;
X[24] = 53301709843202;
X[25] = 198924689265124;
X[26] = 742397047217294;
X[27] = 2770663499604052;
X[28] = 10340256951198914;
X[29] = 38590364305191604;
X[30] = 144021200269567502;
X[31] = 537494436773078404;
X[32] = 2005956546822746114;
X[33] = 7486331750517906052;
X[34] = 27939370455248878094;
X[35] = 104271150070477606324;
X[36] = 389145229826661547202;
X[37] = 1452309769236168582484;
X[38] = 5420093847118012782734;
X[39] = 20228065619235882548452;
X[40] = 75492168629825517411074;
X[41] = 281740608900066187095844;
X[42] = 1051470266970439230972302;
X[43] = 3924140458981690736793364;
X[44] = 14645091568956323716201154;
X[45] = 54656225816843604128011252;
X[46] = 203979811698418092795843854;
X[47] = 761263020976828767055364164;
X[48] = 2841072272208896975425612802;
X[49] = 10603026067858759134647087044;
X[50] = 39571031999226139563162735374;
X[51] = 147681101929045799118003854452;
X[52] = 551153375716957056908852682434;
X[53] = 2056932400938782428517406875284; // 此处就超过 10^30 了
然后就二分判断就过了。
这题根本就不存在 -1。
CODE
zxy tql %%%%%%
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<bitset>
#include<ctime>
#include<iostream>
#define MAXN 2005
#define LL long long
#define ULL unsigned LL
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#define DB double
//#define bs bitset<1005>
//#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
char char_read_before = 1;
inline int read() {
int f = 1,x = 0;char s = char_read_before;
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
char_read_before = s; return x * f;
}
inline char readchar() {
char s = char_read_before;
while(s == 1 || s == ' ' || s == '\n') s = getchar();
char_read_before = 1; return s;
}
LL zxy = 100000000;
int n,m,i,j,s,o,k;
DB bg;inline DB Time() {return DB(clock() - bg) / CLOCKS_PER_SEC;}
struct Num{
LL s[4];
Num(){s[0]=s[1]=s[2]=s[3]=0;}
Num(int b) {s[0] = b;s[1] = s[2] = s[3] = 0;}
Num operator = (int b) {
s[0] = b;
s[1] = s[2] = s[3] = 0;
return *this;
}
void tl() {
s[0] *= 10;
s[1] = s[1] * 10 + s[0] / zxy;
s[2] = s[2] * 10 + s[1] / zxy;
s[3] = s[3] * 10 + s[2] / zxy;
s[0] %= zxy;
s[1] %= zxy;
s[2] %= zxy;
}
};
inline Num operator *(Num a,Num b) {
Num c;
for(int i = 0;i < 4;i ++) {
LL m = 0;
for(int j = 0;i+j < 4;j ++) {
c.s[i+j] += a.s[i] *1ll* b.s[j] + m;
m = c.s[i+j] / zxy;
c.s[i+j] %= zxy;
}
}return c;
}
inline Num operator +(Num a,Num b) {
LL m = 0;
for(int i=0;i<4;i++) {
a.s[i] += b.s[i] + m;
m = a.s[i] / zxy;
a.s[i] %= zxy;
}return a;
}
inline bool operator < (Num a,Num b) {
if(a.s[3] != b.s[3]) return a.s[3] < b.s[3];
if(a.s[2] != b.s[2]) return a.s[2] < b.s[2];
if(a.s[1] != b.s[1]) return a.s[1] < b.s[1];
return a.s[0] < b.s[0];
}
inline bool operator >= (Num a,Num b) {return !(a < b);}
inline void print(Num a) {
int le = 0;
if(a.s[3]) le = 3;
else if(a.s[2]) le = 2;
else if(a.s[1]) le = 1;
printf("%d",a.s[le]);
while(le --) printf("%08d",a.s[le]);
return ;
}
inline Num readn() {
int f = 1;Num x(0);char s = char_read_before;
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x.tl();x = x + Num(s - '0');s = getchar();}
char_read_before = s; return x;
}
struct mat{
int n,m;
Num s[3][3];
mat(){n=m=0;s[1][1]=s[1][2]=s[2][1]=s[2][2]=Num();}
}A,B;
inline mat operator * (mat a,mat b) {
mat c; c.n = a.n;c.m = b.m;
for(int i=1;i<=c.n;i++)
for(int k=1;k<=a.m;k++)
for(int j=1;j<=c.m;j++)
c.s[i][j] = c.s[i][j] + a.s[i][k] * b.s[k][j];
return c;
}
Num as[100];
signed main() {
bg = clock();
A.n = 1;
A.m = B.n = B.m = 2;
A.s[1][1] = 2;
A.s[1][2] = 3;
B.s[1][1] = 2;
B.s[2][1] = 1;
B.s[1][2] = 3;
B.s[2][2] = 2;
for(int i = 0;i <= 52;i ++) {
as[i] = A.s[1][1] * Num(2);
A = A * B;
}
int T = read();
while(T --) {
Num nn = readn();
int l = 0,r = 52,mid;
while(l < r) {
mid = l + r >> 1;
if(as[mid] >= nn) r = mid;
else l = mid+1;
}
print(as[l]);
ENDL;
}
return 0;
}
HDU 6222 Heron and His Triangle (pell 方程)的更多相关文章
- Heron and His Triangle HDU - 6222(pell 大数)
---恢复内容开始--- Heron and His Triangle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/2 ...
- HDU 2281 Square Number Pell方程
http://acm.hdu.edu.cn/showproblem.php?pid=2281 又是一道Pell方程 化简构造以后的Pell方程为 求出其前15个解,但这些解不一定满足等式,判断后只有5 ...
- Pell方程及其一般形式
一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...
- hdu 3304 Interesting Yang Yui Triangle
hdu 3304 Interesting Yang Yui Triangle 题意: 给出P,N,问第N行的斐波那契数模P不等于0的有多少个? 限制: P < 1000,N <= 10^9 ...
- hdu3293(pell方程+快速幂)
裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others) Memory Limit: ...
- POJ 1320 Street Numbers Pell方程
http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b 要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...
- POJ 2427 Smith's Problem Pell方程
题目链接 : http://poj.org/problem?id=2427 PELL方程几个学习的网址: http://mathworld.wolfram.com/PellEquation.html ...
- Heron and His Triangle HDU - 6222
题目链接:https://vjudge.net/problem/HDU-6222 思路:打表找规律. 然后因为数据范围较大可以考虑用字符串模拟,或者__int128要注意用一个快读快输模板. 1 #i ...
- Heron and His Triangle 2017 沈阳区域赛
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integer ...
随机推荐
- JS数组at函数(获取最后一个元素的方法)介绍
本文介绍js中数组的at函数,属于比较简单的知识普及性文章,难度不大. 0x00 首先,我们可以思考如下一个问题,如果要获取一个数组的最后一个元素(这是很常用的操作),我们应该怎么做? 相信大部分人能 ...
- 透过Redis源码探究字符串的实现
转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 本文使用的Redis 5.0源码 概述 最近在通过 Redis 学 C 语言,不得不说, ...
- 12.web基础与HTTP协议
web基础与HTTP协议 目录 web基础与HTTP协议 web基础 域名概述 HTML概述 HTML基本标签 HTML语法规则 HTML文件结构 头标签中常用标签 内容标签中常用标签 静态网页与动态 ...
- JS:函数
Function:函数 1. 定义一个函数:function functionname(argument) { 代码块 return }: 调用此函数:fn() 2.函数是定义了一种方法,只有被调用才 ...
- SAP 复制Client
原文链接:https://fenginfo.com/102.html 枫竹丹青 SCCL 复制客户端 进入了客户端复制主界面,首先选择参数文件(Selected Profile),虽然此条目为灰色的但 ...
- SAP Using Text Modules in Adobe Forms
In this demo we will create an adobe form which displays text in two different languages (English or ...
- KVM虚拟机安装及桥接网络配置
1.查看CPU是否支持intel或AMD的虚拟技术 cat /proc/cpuinfo | grep -E "vmx|svm" --color --vmx intel的CPU sv ...
- 毕设着急了吧?Python股票数据分析,制作动态柱状图
写在前面的一些屁话: 雪球成立于 2010 年,是北京雪球信息科技有限公司旗下推出的投资者社区.雪球一直致力于为中国投资者提供跨市场(沪深.香港.美国),跨品种(股票.基金.债券等)的数据查询.资讯获 ...
- nginx配置的server_name无法访问
问题: 我的nginx.conf配置文件中的server_name是这样子的,然后无法访问. 但是如果说server_name后面改成服务器的IP地址却是可以访问的. 解决方案: 在本机上(不是服务器 ...
- day11 - 多线程
1内容 进程.线程介绍 Java中 线程的实现方式 Thread 类 Runnable 接口 Callable 接口 线程相关的方法 线程安全问题 - 同步技术 线程等待唤醒机制 进程(Process ...