Numpy

  • NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

1 创建 ndarray

  1. 使用np.array()创建

    import numpy as np
    # 一维数据创建
    ret = np.array([1, 2, 3])
    # 二维数据创建
    ret = np.array([[1, 2, 3], [4, 5, 6]])
    print(ret)
    • numpy默认ndarray的所有元素的类型是相同的

    • 如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str>float>int

    • 使用matplotlib.pyplot获取一个numpy数组,数据来源于一张图片

      import matplotlib.pylab as plt
      # 图片数据转化为数组
      img_arr = plt.imread('./cat.jpg')
      # 数组转图片
      img_show = plt.imshow(img_arr)
      # 操作该numpy数据,该操作会同步到图片中
      plt.imshow(img_arr-100)
  2. 使用np的routines函数创建

    • np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 等差数列

      np.linspace(0,100,num=20)
    • np.arange([start, ]stop, [step, ]dtype=None)

      np.arange(0,100,2)
    • np.random.randint(low, high=None, size=None, dtype='l') 随机生成

      np.random.seed(100) #固定随机性#随机因子:系统的时间
      arr = np.random.randint(0,100,size=(4,5)) #size 4行5列
    • np.random.random(size=None)

      生成0到1的随机数,左闭右开 np.random.seed(3)

      np.random.random(size=(4,5))  # 4行5列

2 ndarray的属性

  • 4个必记参数: ndim:维度 shape:形状(各维度的长度) size:总长度

  • dtype:元素类型

    arr = np.random.randint(0, 100, size=(4, 5))
    arr.ndim
    arr.shape
    ...

3 ndarray的基本操作

  • 索引

    • 一维与列表完全一致 多维时同理
  • 切片

    • 一维与列表完全一致 多维时同理
    np.random.seed(100)  # 固定随机性#随机因子:系统的时间
    arr = np.random.randint(0, 100, size=(4, 5))
    #获取二维数组前两行
    arr[0:2]
    #获取二维数组前两列
    arr[:,0:2]
    # 获取二维数组前两行和前两列数据
    arr[0:2,0:2]
    # 将数组的行倒序
    arr[::-1]
    #列倒序
    arr[:,::-1]
    #全部倒序
    arr[::-1,::-1]
    # 图片倒置,裁剪
    plt.imshow(img_arr[:,::-1,:])
  • 变形

    • 使用arr.reshape()函数,注意参数是一个tuple!

    • 将一维数组变形成多维数组 arr_1.reshape((2,10))

      arr_1 = np.random.randint(0, 100, size=(1,20))
      print(arr_1)
      print(arr_1.reshape((2, 10)))
      '''[[ 9 93 86 2 27 4 31 1 13 83 4 91 59 67 7 49 47 65 61 14]]
      [[ 9 93 86 2 27 4 31 1 13 83]
      [ 4 91 59 67 7 49 47 65 61 14]]
      '''
    • 将多维数组变形成一维数组 arr.reshape((20,))

  • 级联

    • np.concatenate()

    • 一维,二维,多维数组的级联,实际操作中级联多为二维数组

    • np.concatenate((arr,arr,arr),axis=1)

      array([[ 8, 24, 67, 87, 79],
      [48, 10, 94, 52, 98],
      [53, 66, 98, 14, 34],
      [24, 15, 60, 58, 16]])
      np.concatenate((arr,arr,arr),axis=1)
      array([[ 8, 24, 67, 87, 79, 8, 24, 67, 87, 79, 8, 24, 67, 87, 79],
      [48, 10, 94, 52, 98, 48, 10, 94, 52, 98, 48, 10, 94, 52, 98],
      [53, 66, 98, 14, 34, 53, 66, 98, 14, 34, 53, 66, 98, 14, 34],
      [24, 15, 60, 58, 16, 24, 15, 60, 58, 16, 24, 15, 60, 58, 16]])
    • 应用,合并参数一致的图片

      img_3 = np.concatenate((img_arr,img_arr,img_arr),axis=1)
      img_9 = np.concatenate((img_3,img_3,img_3),axis=0)
      plt.imshow(img_9)
    • 级联的参数是列表:一定要加中括号或小括号

    • 维度必须相同

    • 形状相符:在维度保持一致的前提下,如果进行横向(axis=1)级联,必须保证进行级联的数组行数保持一致。如果进行纵向(axis=0)级联,必须保证进行级联的数组列数保持一致。

    • 可通过axis参数改变级联的方向

4 ndarray的聚合操作

  • 求和np.sum

    arr.sum(axis=1)  # 横向(axis=1)级联,纵向(axis=0)级联
  • 最大最小值:np.max/ np.min

  • 平均值:np.mean()

  • 其他聚合操作

5 ndarray 的排序

p.sort()与ndarray.sort()都可以,但有区别:

  • np.sort()不改变输入
  • ndarray.sort()本地处理,不占用空间,但改变输入
np.sort(arr,axis=0)

数据分析之Numpy的基本操作的更多相关文章

  1. 数据分析 之 NumPy

    目录 简单了解数据分析 Python数据分析三剑客(Numpy,Pandas,Matplotlib) 简单使用np.array() 使用np的routines函数创建数组 ndarray N维数组对象 ...

  2. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  3. 数据分析入门——numpy类库基础知识

    numpy类库是数据分析的利器,用于高性能的科学计算和数据分析.使用python进行数据分析,numpy这个类库是必须掌握的.numpy并没有提供强大的数据分析功能,而是它提供的ndarray数据结构 ...

  4. Python numpy的基本操作你一般人都不会

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.  PS:如有需要最新Python学习资料的小伙伴可以加点击下方链接自行获取 ...

  5. python numpy的基本操作

    站长资讯平台:文章目录0.NumPy 与 ndarry1.数组属性查看:类型.尺寸.形状.维度2.numpy元素中数据存储方式,数据类型,类型转换2.1 查看元素数据存储类型2.2 元素数据存储类型转 ...

  6. 数据分析01 /numpy模块

    数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. num ...

  7. NumPy的基本操作

    1 简介 NumPy 是用于处理数组的 python 库,部分用 Python 编写,但是大多数需要快速计算的部分都是用 C 或 C ++ 编写的.它还拥有在线性代数.傅立叶变换和矩阵领域中工作的函数 ...

  8. (零)机器学习入门与经典算法之numpy的基本操作

    1.根据索引来获取元素* 创建一个索引列表ind,用来装载索引,当numpy数据是一维数据时:一个索引对应的是一个元素具体的例子如下: import numpy as np # 数据是一维数据时:索引 ...

  9. 数据分析三剑客 numpy,oandas,matplotlib

    数据分析: 是不把隐藏在看似杂乱无章的数据域背后的信息提炼出来,总结出所研究对象内在规律 NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩 ...

随机推荐

  1. 接口java.util.Map的四个实现类HashMap Hashtable LinkedHashMap TreeMap

    java中HashMap,LinkedHashMap,TreeMap,HashTable的区别 :java为数据结构中的映射定义了一个接口java.util.Map;它有四个实现类,分别是HashMa ...

  2. while read line [linux] shell 学习

    转至:https://blog.csdn.net/qq_22083251/article/details/80484176 循环中的重定向 或许你应该在其他脚本中见过下面的这种写法: while re ...

  3. tput用法详解-渐入佳境

    --作者:飞翔的小胖猪 --创建时间:2021年2月28日 tput 命令将通过 terminfo 数据库对终端会话进行初始化和操作. 主要功能为:移动更改光标.更改文本属性颜色.清除屏幕特定区域. ...

  4. Java课程设计---索引

    一.基础配置 ============================================================== 1.Java课程设计---Eclipse基本环境配置 2.J ...

  5. WIN10:全选一个文件夹中的所有文件

  6. jieba:统计一篇文章中词语数

    jieba官方文档 1.jieba分词的四种模式 精确模式.全模式.搜索引擎模式.paddle模式 精确模式:把文本精确的切分开,不存在冗余单词,适合文本分析: 全模式:把文本中所有可能的词语都扫描出 ...

  7. c# 窗体相关操作(最大化/最小化/关闭/标题栏)

    /// <summary> /// 窗体跟随鼠标移动的标记 /// </summary> private bool normalmoving = false; /// < ...

  8. C# Winform中FpSpread表格控件设置固定的(冻结的)行或列

    在项目中我们经常会用到固定表头的操作,FpSpread提供了冻结行或列的属性. 你可以冻结表单中的行或列(使其不可滚动). 你可以冻结任意个表单顶部的行,使其成为前导行,你也可以冻结左侧任意多个列,使 ...

  9. 【FAQ】接入HMS Core推送服务过程中一些常见问题总结

    HMS Core 推送服务(Push Kit)是华为提供的消息推送平台,建立了从云端到终端的消息推送通道.开发者通过集成推送服务,可以向客户端应用实时推送消息,构筑良好的用户关系,提升用户的感知度和活 ...

  10. 矩池云上安装 NVCaffe教程

    使用的是P100,cuda11.1base镜像 创建虚拟环境 conda create -n py36 python=3.6 conda deactivate conda activate py36 ...