论文信息

论文标题:Asymmetric Tri-training for Unsupervised Domain Adaptation
论文作者:Kuniaki SaitoY. UshikuT. Harada
论文来源:27 February 2017——ICML
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  简单的域分布对齐可能无法提供有效的判别表示,为学习目标域的判别表示,本文假设人工标记目标样本可以产生良好的表示。

  在本文中,提出了一种用于无监督域适应的非对称三重训练方法,将伪标签分配给未标记的样本,并像训练真实标签一样训练神经网络。 本文工作,不对称地使用三个网络。 不对称是指两个网络用于标记未标记的目标样本,一个网络由样本训练以获得目标判别表示。

2 相关工作

  [1] 研究了伪标签在神经网络中的作用。他们认为,使用伪标签训练分类器的效果等同于熵正则化,从而导致类之间的低密度分离。

3 方法

  整体框架:

  

  算法伪代码:

  

  为使 $F_{1}$, $F_{2}$ 从不同视角分类样本,将分类器权重 $\left|W_{1}^{T} W_{2}\right|$ 考虑到损失函数:

    $E\left(\theta_{F}, \theta_{F_{1}}, \theta_{F_{2}}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[L_{y}\left(F_{1} \circ F\left(x_{i}\right), y_{i}\right)+L_{y}\left(F_{2} \circ F\left(x_{i}\right), y_{i}\right)\right]+\lambda\left|W_{1}^{T} W_{2}\right|  \quad\quad\quad(1)$

  伪代码主要分为两部分:

    • 第一部分:使用训练集训练整个网络,$F_{1}$, $F_{2}$ 使用 $\text{Eq.1}$ 优化,$F_{t}$ 使用标准的分类损失训练;
    • 第二部分:为目标域样本提供伪标签,要求1:$F_{1}$, $F_{2}$  的预测类别相同;要求2:$F_{1}$, $F_{2}$  预测的概率大于 $0.9$ 或 $0.95$;

  为防止过拟合得到伪标签,重采样参与的伪标签样本。设置 $N_{\text {init }}=5000$ ,然后逐步增 加参与的数量 $N_{t}=k / 20 * n$ , $n$ 为所有目标域样本数量。设置参与训练的价标签样本最大数量为 $40000$。

  通过构建仅在目标域样本上训练的特定于目标域的网络,将学习判别性表示。但是仅使用有噪声的伪标签样本训练,网络可能无法学习有用的表示。然后我们使用源域和伪标签样本训练三个分类器以保证准确率。同随着训练, $F$  将学习目标域判别性表示,使分类器 $F_{1}$, $F_{2}$  的正确率提升。这个周期逐渐增强目标域上的准确率。

[1] Lee, Dong-Hyun. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In ICML workshop on Challenges in Representation Learning, 2013.

迁移学习《Asymmetric Tri-training for Unsupervised Domain Adaptation》的更多相关文章

  1. 迁移学习(IIMT)——《Improve Unsupervised Domain Adaptation with Mixup Training》

    论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxia ...

  2. 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》

    论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...

  3. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  4. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  5. 虚假新闻检测(CADM)《Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup》

    论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversari ...

  6. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  7. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

  8. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  9. Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition

    年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        

  10. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

随机推荐

  1. formidable处理文件上传的细节

    koa在请求体的处理方面依赖于通用插件koa-bodyparser或者koa-body,前者比较小巧,内部使用了co-body库,可以处理一般的x-www-form-urlencoded格式的请求,但 ...

  2. bert一些思考

    bert结构 首先是embdding lookup,[batch * seq]-->[batch, seq, hidden] 然后是加个mask embdding和type embdding和p ...

  3. vim多行缩进

    1.首先设置vim缩进空格 vim /etc/vim/vimrc 或者vim /etc/vimrc,添加一下文字 set smartindent set shiftwidth=4 # 缩进四个空格 # ...

  4. P2330 繁忙的都市

    题目描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条 ...

  5. 1js 高级

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. kubeadm搭建k8s

    一.kubeadm 部署 K8S 集群架构 主机名 IP地址 安装组件 master(2C/4G,cpu核心数要求大于2) 192.168.160.20 docker.kubeadm.kubelet. ...

  7. SQL SERVER 内存优化表踩坑记

    背景 因为生产应用需要刷新大量的状态数据到数据库中用于客户端的显示,于是新建了一张状态表,表内行数固定,状态更新到列内.刚开始运行时还行,更新都很及时,查询速度也不慢.于是就这样使用了有一个月的时间. ...

  8. 安卓手机qpython使用感觉

    我是写C#的,最佳一时兴起,下载了个qpython来玩儿,发现这东西写点简单的爬虫还行,配合sqlite,可以做一些简单的事情,于是乎想写一个有趣的东西,在qpython写一个脚本,去收蚂蚁森林的能量 ...

  9. 基于R的Bilibili视频数据建模及分析——预处理篇

    基于R的Bilibili视频数据建模及分析--预处理篇 文章目录 基于R的Bilibili视频数据建模及分析--预处理篇 0.写在前面 1.项目介绍 1.1 项目背景 1.2 数据来源 1.3 数据集 ...

  10. 嵌入式数据库 sqllite & h2  utils

    使用场景: 简单脚本,但是有需要数据记录. (使用前升级下版本) 我的使用: 老机器,老项目,jkd6,  需要记录 SqlLiteUtils package com.sea.edi.listener ...