题目链接

题目

题目描述

现有一个传动系统,包含了N个组合齿轮和M个链条。每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y。

即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈。传动比为正表示若编号为u的齿轮顺时针转动,则编号为v的齿轮也顺时针转动。传动比为负表示若编号为u的齿轮顺时针转动,则编号为v的齿轮会逆时针转动。若不同链条的传动比不相容,则有些齿轮无法转动。我们希望知道,系统中的这N个组合齿轮能否同时转动。

输入描述

有多组数据,第一行给定整数T,表示总的数据组数,之后依次给出T组数据。

每一组数据的第一行给定整数N和M,表示齿轮总数和链条总数。

之后有M行,依次描述了每一个链条,其中每一行给定四个整数u,v,x和y,表示只考虑这一组联动关系的情况下,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈。

请注意,x为正整数,而y为非零整数,但是y有可能为负数。

T ≤ 32,N ≤ 1000,M ≤ 10000且x与y的绝对值均不超过100

输出描述

输出T行,对应每一组数据。首先应该输出标识这是第几组数据,参见样例输出。之后输出判定结果,如果N个组合齿轮可以同时正常运行,则输出Yes,否则输出No。

示例1

输入

2
3 3
1 2 3 5
2 3 5 -7
1 3 3 -7
3 3
1 2 3 5
2 3 5 -7
1 3 3 7

输出

Case #1: Yes
Case #2: No

题解

方法一

知识点:并查集。

用带权并查集维护齿轮之间的关系,用权值表示根节点转一圈,这个节点转的圈数。

路径压缩,将父节点到根节点的权值乘以自己的权值。

集合合并,对于节点 \(x\) 和 \(y\) 以及其根节点 \(rx\) 和 \(ry\) ,将 \(rx\) 合并到 \(ry\) 需要得到 \(rx\) 的新权值,即得到 \(rx\) 和 \(ry\) 的传动比,有:

\[w_{rx}' = \frac{1}{w_{x}} \cdot \frac{x}{y} \cdot \frac{w_{y}}{1} \cdot 1
\]

即四个齿轮的三个传动比相乘得到 \(rx\) 和 \(ry\) 的传动比再将 \(ry\) 圈数设为 \(1\) ,于是 \(w_{rx}\) 就等于 \(rx\) 与 \(ry\) 的传动比乘以 \(ry\) 的圈数 \(1\) 。

如果新加关系的两个点已经在一个关系集合中,那就检验是否合法:

\[\frac{w_{x}}{w_{y}} = \frac{x}{y}
\]

两者传动比是否相等,相等则合法。

注意精度问题,相等用小于误差表示。

时间复杂度 \(O(n + m\log n)\)

空间复杂度 \(O(n)\)

方法二

知识点:DFS,图论。

和并查集思路差不多,但建图时要建无向图,因为需要直到可能遍历时走的是反向的。给起点权值赋为 \(1\) ,其他节点根据传动比赋值,上一个节点乘以这个方向的传动比的倒数的结果即是这个点实际转多少圈。

如果遇到遍历到一个访问过的节点,那就判断实际权值和目前算出来的权值是否相等。

时间复杂度 \(O(n+m)\)

空间复杂度 \(O(n+m)\)

代码

方法一

#include <bits/stdc++.h>
#define ll long long using namespace std; int n, m;
int fa[10007];
double w[10007]; int find(int x) {
if (fa[x] == x) return x;
int pre = fa[x];
fa[x] = find(fa[x]);
w[x] *= w[pre];
return fa[x];
} bool merge(int x, int y, double r) {
int rx = find(x);
int ry = find(y);
if (rx == ry)
return abs(w[x] / w[y] - r) < 1e-6;
fa[rx] = ry;
w[rx] = 1 / w[x] * r * w[y];
return true;
} bool solve() {
cin >> n >> m;
for (int i = 1;i <= n;i++) fa[i] = i, w[i] = 1;
bool flag = true;
for (int i = 0;i < m;i++) {
int u, v;
double x, y;
cin >> u >> v >> x >> y;
if (!flag) continue;
flag &= merge(u, v, x / y);
}
return flag;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
for (int i = 1;i <= t;i++) {
cout << "Case #" << i << ": ";
if (!solve()) cout << "No" << '\n';
else cout << "Yes" << '\n';
}
return 0;
}

方法二

#include <bits/stdc++.h>
#define ll long long using namespace std; int n, m;
struct edge {
int to, nxt;
double w;
}e[10007 << 1];
int h[1007], cnt;
double vis[1007]; void add(int u, int v, double w) {
e[cnt].to = v;
e[cnt].w = w;
e[cnt].nxt = h[u];
h[u] = cnt++;
} bool dfs(int u) {
for (int i = h[u];~i;i = e[i].nxt) {
int v = e[i].to;
if (vis[v]) {
if (abs(vis[v] - vis[u] / e[i].w) > 1e-6) return false;
}
else {
vis[v] = vis[u] / e[i].w;
if (!dfs(v)) return false;
}
}
return true;
} bool solve() {
cin >> n >> m;
for (int i = 1;i <= n;i++) h[i] = -1, vis[i] = 0;
cnt = 0;
for (int i = 0;i < m;i++) {
int u, v;
double x, y;
cin >> u >> v >> x >> y;
add(u, v, x / y);
add(v, u, y / x);
}
vis[1] = 1;
return dfs(1);
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
for (int i = 1;i <= t;i++) {
cout << "Case #" << i << ": ";
if (!solve()) cout << "No" << '\n';
else cout << "Yes" << '\n';
}
return 0;
}

NC20583 [SDOI2016]齿轮的更多相关文章

  1. [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 613  Solved: 324 [Submit][Status ...

  2. BZOJ 4602: [Sdoi2016]齿轮 dfs

    4602: [Sdoi2016]齿轮 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4602 Description 现有一个传动系统,包 ...

  3. BZOJ4602 Sdoi2016 齿轮 【带权并查集】*

    BZOJ4602 Sdoi2016 齿轮 Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组 ...

  4. bzoj 4602: [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x  : y.即如果只考虑这两个组合 ...

  5. BZOJ4602:[SDOI2016]齿轮(并查集)

    Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x  : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v ...

  6. 【bzoj4602】[Sdoi2016]齿轮 BFS

    题目描述 给出一张n个点m条边的有向图,每条边 (u,v,x,y) 描述了 u 的点权乘 x 等于 v 的点权乘 y (点权可以为负).问:是否存在满足条件的图. 输入 有多组数据,第一行给定整数T, ...

  7. BZOJ4602 SDOI2016齿轮(搜索)

    dfs一遍给每个齿轮随便标个值看是否矛盾就行了. #include<iostream> #include<cstdio> #include<cmath> #incl ...

  8. bzoj4602 [Sdoi2016]齿轮

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4602 [题解] 对于每组齿轮(u, v)连边,权值为y/x(反向边x/y) 那么直接dfs计 ...

  9. [bzoj4602][Sdoi2016]齿轮——dfs

    题目 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈.传 ...

随机推荐

  1. 【mq】从零开始实现 mq-03-引入 broker 中间人

    前景回顾 [mq]从零开始实现 mq-01-生产者.消费者启动 [mq]从零开始实现 mq-02-如何实现生产者调用消费者? [mq]从零开始实现 mq-03-引入 broker 中间人 上一节我们学 ...

  2. 超耐心地毯式分析,来试试这道看似简单但暗藏玄机的Promise顺序执行题

    壹 ❀ 引 就在昨天,与朋友聊到JS基础时,她突然想起之前在面试时,遇到了一道难以理解的Promise执行顺序题.由于我之前专门写过手写promise的文章,对于部分原理也还算了解,出于兴趣我便要了这 ...

  3. Linux-进程工具

    1.进程树 pstree pstree 可以用来显示进程的父子关系,以树形结构显示 格式: pstree [OPTION] [ PID | USER ] 常用选项: -p 显示PID -T 不显示线程 ...

  4. [python][flask] Flask 入门(以一个博客后台为例)

    目录 1.安装 1.1 创建虚拟环境 1.2 进入虚拟环境 1.3 安装 flask 2.上手 2.1 最小 Demo 2.2 基本知识 3.解构官网指导 Demo 3.1 克隆与代码架构分析 3.2 ...

  5. pandas子集选取的三种方法:[]、.loc[]、.iloc[]

    pandas读取Excel.csv文件中的数据时,得到的大多是表格型的二维数据,在pandas中对应的即为DataFrame数据结构.在处理这类数据时,往往要根据据需求先获取数据中的子集,如某些列.某 ...

  6. 全网显示 IP 归属地,这背后的技术你知道吗?

    为了进一步规范国内的网络舆论,国家规定了各互联网平台都需要显示 IP 归属地信息.微博.抖音.公众号等多个平台纷纷上线了 IP 归属地功能,这标志着国内言论的进一步规范化.但互联网平台商们是怎么通过 ...

  7. VMware-workstation 安装步骤

    目录 VMware Workstation简介 软件获取 百度网盘获取 VM激活码: 安装步骤: VMware Workstation简介 VMware Workstation(中文名"威睿 ...

  8. 理解 Angular 服务

    理解 Angular 服务 本文写于 2021 年 3 月 29 日 理解 Angular 服务 什么是服务 服务写法 原理简述 提供服务 1. 在服务中注册 2. 在 module 中注册 3. 在 ...

  9. 国内访问 git 慢的方法

    在国内访问 git 的时候,总会存在访问慢或者git clone 的时候报下面的错误 这个时候,我们可以使用代理的方式去进行访问 需要注意的是:你必须存在一个国外的,能够让你快速访问到 GitHub ...

  10. 对于vjudge在有些网络下无法打开的问题

    因为有些网络会屏蔽vjudge,所以打开 镜像网址 不行再试试这个:最新镜像网址