假设数据集是独立同分布的,可以将数据集划分为不同的比例:Train Set and Test Set.

同时在Train Set and Test Set上做精度测试,或者隔一段时间在Test Set上做测试,来判断训练模型是否发生过拟合,受否需要提前的终止,目的是选择最好的模型参数。(严格的说,其实应该是Validation)

严格的会分为三部分:Train Set; Validation Set(提前终止,提高泛化能力); Test Set(不会得到)

K-fold cross-validation:每个数据都有可能back propagation。

换着方式取Train Set,将能利用的数据都利用起来:

减缓过拟合的方法:

1) regularization

2)momentum

3)Learning rate tunning

4)Early Stopping

5)Dropout

pytorch和tensorflow中的Dropout参数含义是不同的

Overfitting & Train Set & Test Set的更多相关文章

  1. 11 Clever Methods of Overfitting and how to avoid them

    11 Clever Methods of Overfitting and how to avoid them Overfitting is the bane of Data Science in th ...

  2. DL4J (DeepLearning for java)

    http://deeplearning4j.org/lstm.html A Beginner’s Guide to Recurrent Networks and LSTMs Contents Feed ...

  3. 训练集(train set) 验证集(validation set) 测试集(test set)

    转自:http://www.cnblogs.com/xfzhang/archive/2013/05/24/3096412.html 在有监督(supervise)的机器学习中,数据集常被分成2~3个, ...

  4. 深度学习(一)cross-entropy softmax overfitting regularization dropout

    一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出   简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...

  5. AI - TensorFlow - 过拟合(Overfitting)

    过拟合 过拟合(overfitting,过度学习,过度拟合): 过度准确地拟合了历史数据(精确的区分了所有的训练数据),而对新数据适应性较差,预测时会有很大误差. 过拟合是机器学习中常见的问题,解决方 ...

  6. tensorflow学习之(八)使用dropout解决overfitting(过拟合)问题

    #使用dropout解决overfitting(过拟合)问题 #如果有dropout,在feed_dict的参数中一定要加入dropout的值 import tensorflow as tf from ...

  7. 4 TensorFlow入门之dropout解决overfitting问题

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  8. 【Hazard of Overfitting】林轩田机器学习基石

    首先明确了什么是Overfitting 随后,用开车的例子给出了Overfitting的出现原因 出现原因有三个: (1)dvc太高,模型过于复杂(开车开太快) (2)data中噪声太大(路面太颠簸) ...

  9. 学习笔记(三): Generalization/Overfitting/Validation

      目录 Generalization: Peril of Overfitting Low loss, but still a bad model? How Do We Know If Our Mod ...

随机推荐

  1. DFA算法之内容敏感词过滤

    DFA 算法是通过提前构造出一个 树状查找结构,之后根据输入在该树状结构中就可以进行非常高效的查找. 设我们有一个敏感词库,词酷中的词汇为:我爱你我爱他我爱她我爱你呀我爱他呀我爱她呀我爱她啊 那么就可 ...

  2. python数据处理matplotlib入门(2)-利用随机函数生成变化图形

    综合前述的类.函数.matplotlib等,完成一个随机移动的过程(注意要确定移动的次数,比如10万次),每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策确定的,最后显示出每次移动的位置 ...

  3. 论文解读(Graphormer)《Do Transformers Really Perform Bad for Graph Representation?》

    论文信息 论文标题:Do Transformers Really Perform Bad for Graph Representation?论文作者:Chengxuan Ying, Tianle Ca ...

  4. vmware ubuntu 忘记密码

    1.进入recovery模式 修改root密码 1.启动ubuntu系统,一开始在有进度条的时候按下shift键,出现GRUB选择菜单,选择Advanced options for Ubuntu 按回 ...

  5. Windows平台安装SQLite3数据库

    Windows平台安装SQLite3数据库 话不多说,开始! 访问SQLite官网下载资源 在搜索引擎中键入SQLite3关键字寻找官网入口或直接点击此处前往SQLite官网,官网界面如下: 点击页面 ...

  6. 超详细的Linux 用户与用户组知识

    一个执着于技术的公众号 1.用户和组的概念 Linux系统对用户与组的管理是通过ID号来实现的.我们在登录系统时,输入用户名与对应密码,操作系统会将用户名转化为ID号后再判断该账号是否存在,并对比密码 ...

  7. Linux服务器安全加固10条建议

    以下是服务器安全加固的步骤,本文以腾讯云的CentOS7.7版本为例来介绍,如果你使用的是秘钥登录服务器1-5步骤可以跳过. 设置复杂密码 服务器设置大写.小写.特殊字符.数字组成的12-16位的复杂 ...

  8. 【面试普通人VS高手系列】为什么要使用Spring 框架?

    一个工作了4年的小伙伴,他说他从线下培训就开始接触Spring,到现在已经快5年时间了. 从来没有想过,为什么要使用Spring 框架. 结果在面试的时候,竟然遇到一个这样的问题. 大脑一时间短路了, ...

  9. netty系列之:netty中常用的xml编码解码器

    目录 简介 XmlFrameDecoder XmlDecoder 总结 简介 在json之前,xml是最常用的数据传输格式,虽然xml的冗余数据有点多,但是xml的结构简单清晰,至今仍然运用在程序中的 ...

  10. 忽略https域名校验不通过

    curl curl 报错: curl: (51) Unable to communicate securely with peer: requested domain name does not ma ...