论文信息

论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks
论文作者:Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang,Sophia Ananiadou
论文来源:2021,EMNLP 
论文地址:download 
论文代码:download

Background

  传播结构为谣言的真假提供了有用的线索,但是现有的谣言检测方法要么局限于用户相应关系,要么简化了对话结构。

  本文说的 Claim 代表的是 Source post ,即源帖。

1 Introduction

  如下为一个简单的 conversation thread 例子:

  

  本文提出的点:考虑兄弟之间的关系,如下图虚线部分。

  

2 Claim-guided Hierarchical Graph Attention Networks

  总体框架如下:

   

  本文的模型包括两个注意力模块:

    • A Graph Attention to capture the importance of different neighboring tweets
    • A claim-guided hierarchical attention to enhance post content understanding

2.1 Claim-guided Hierarchical Attention

  对于每个 tweet $x_i$ ,首先使用 Bi-LSTM 获得 Post 的特征矩阵 $X=\left[c, x_{1}, x_{2}, \cdots, x_{|\mathcal{V}|-1}\right]^{\top}$ ,其中 $c, x_{i} \in \mathbb{R}^{d}$。

  为加强模型的主题一致性和语义推理:

Post-level Attention

  为了防止主题偏离和丢失 claim 的信息,本文采用 gate module 决定它应该接受 claim 多少信息,以更好地指导相关职位的重要性分配。claim-aware representation 具体如下:

    $\begin{array}{l}g_{c \rightarrow x_{i}}^{(l)} &=&\operatorname{sigmoid}\left(W_{g}^{(l)} h_{x_{i}}^{(l)}+U_{g}^{(l)} h_{c}^{(l)}\right) \\\tilde{h}_{x_{i}}^{(l)} &=&g_{c \rightarrow x_{i}}^{(l)} \odot h_{x_{i}}^{(l)}+\left(1-g_{c \rightarrow x_{i}}^{(l)}\right) \odot h_{c}^{(l)}\end{array}$

  其中,$g_{c \rightarrow x_{i}}^{(l)}$ 是一个 gate vector,$W_{g}^{(l)}$ 和 $U_{g}^{(l)}$ 是可学习参数。

  然后,将 claim-aware representation 与 original representation 拼接起来,作为 $\text{Eq.1}$ 的输入去计算注意力权重:
    $\begin{array}{l}\hat{h}_{x_{i}}^{(l)}=\left[\tilde{h}_{x_{i}}^{(l)} \| h_{x_{i}}^{(l)}\right] \\\hat{\alpha}_{i, j}^{(l)}=\operatorname{Atten}\left(\hat{h}_{x_{i}}^{(l)}, \hat{h}_{x_{j}}^{(l)}\right)\end{array}$

2.2 Graph Attention Networks

  为了编码结构信息,本文使用 GAT encoder:
  输入:$H^{(l)}=\left[h_{c}^{(l)}, h_{x_{1}}^{(l)}, h_{x_{2}}^{(l)}, \ldots, h_{x_{|\mathcal{V}|-1}}^{(l)}\right]^{\top}$
  过程:
    ${\large \begin{aligned}\alpha_{i, j}^{(l)} &=\operatorname{Atten}\left(h_{x_{i}}^{(l)}, h_{x_{j}}^{(l)}\right) \\&=\frac{\exp \left(\phi\left(a^{\top}\left[W^{(l)} h_{x_{i}}^{(l)} \| W^{(l)} h_{x_{j}}^{(l)}\right]\right)\right)}{\sum_{j \in \mathcal{N}_{i}} \exp \left(\phi\left(a^{\top}\left[W^{(l)} h_{x_{i}}^{(l)} \| W^{(l)} h_{x_{j}}^{(l)}\right]\right)\right)}\end{aligned}} $

    $h_{x_{i}}^{(l+1)}=\operatorname{Re} L U\left(\sum\limits_{j \in \mathcal{N}_{i}} \alpha_{i, j}^{(l)} W^{(l)} h_{x_{j}}^{(l)}\right)$

  考虑多头注意力:

    $h_{x_{i}}^{(l+1)}=\|_{k=1}^{K} \operatorname{ReLU}\left(\sum\limits _{j \in \mathcal{N}_{i}} \alpha_{i, j}^{(l, k)} W_{k}^{(l)} h_{x_{j}}^{(l)}\right)$

  替换输出层的表示向量:

    ${\large h_{x_{i}}^{(L)}=\operatorname{Re} L U\left(\frac{1}{K} \sum\limits _{k=1}^{K} \sum\limits_{j \in \mathcal{N}_{i}} \alpha_{i, j}^{\left(l^{\prime}, k\right)} W_{k}^{\left(l^{\prime}\right)} h_{x_{j}}^{\left(l^{\prime}\right)}\right)} $

  输出:图表示

    $\bar{s}=\text { mean-pooling }\left(H^{(L)}\right)$

Event-level Attention

  出发点:获得图表示的时候采用的 平均池化并不是一定有意义的,可能存在某些节点对于图分类来说更准确。

  受到 Natural Language Inference (NLI) 的影响,本文考虑对 GAT 最后一层的 $h_{c}^{(L)}$ 和  $\left.h_{x_{i}}^{(L)}: 1\right)$  做如下处理 :

    1)concatenation $\left[h_{c}^{(L)} \| h_{x_{i}}^{(L)}\right]$

    2)element-wise product $h_{\text {prod }}^{(L)}=h_{c}^{(L)} \odot h_{x_{i}}^{(L)}$

    3)absolute element-wise difference $h_{\text {diff }}^{(L)}=\left|h_{c}^{(L)}-h_{x_{i}}^{(L)}\right|$

  接着获得一个联合表示:

    $h_{x_{i}}^{c}=\tanh \left(F C\left(\left[h_{c}^{(L)}\left\|h_{x_{i}}^{(L)}\right\| h_{\text {prod }}^{(L)} \| h_{\text {diff }}^{(L)}\right]\right)\right)$

  通过使用该联合表示计算 Event-level Attention :

    ${\large \begin{array}{l}b_{i} &=&\tanh \left(F C\left(h_{x_{i}}^{c}\right)\right) \\\beta_{i} &=&\frac{\exp \left(b_{i}\right)}{\sum_{i} \exp \left(b_{i}\right)} \\\hat{s} &&=\sum_{i} \beta_{i} h_{x_{i}}^{(L)}\end{array}} $

  最后将其 $\hat{S}$ 与 GAT 最后一层的平均池化图表示 $\bar{s}$ 拼接作为最终图表示,并进行分类:

    $\hat{y}=\operatorname{softmax}(F C([\hat{s} \| \bar{s}]))$

3 Experiments

3.1 Datasets

  

3.2 Rumor Classifification Performance

TWITTER15 分类结果: 

   

PHEME 分类结果:

  

3.3 Ablation Study

  1) ClaHi-GAT/DT: Instead of the undirected interaction graph, we use the directed trees as the model input.

  2) GAT+EA+SC: We simply concatenate the features of the claim with the node features at each GAT layer, to replace the claim-aware representation.

  3) w/o EA: We discard the event-level (inference-based) attention as presented.

  4) w/o PA: We neglect the post-level (claim-aware) attention by leaving out the gating module introduced.

  5) GAT: The backbone model.

  6) GCN: The vanilla graph convolutional networks with no attention.

  

3.4 Evaluation of Undirected Interaction Graphs

  1. ClaHi-GAT/DT Utilize the directional tree applied in past influential works as the modeling way instead of our proposed undirected interaction graph.
  2. ClaHi-GAT/DTS Based on the directional tree structure similar to ClaHi-GAT/DT but the explicit interactions between sibling nodes are taken into account.
  3. ClaHi-GAT/UD The modeling way is our undirected interaction topology but without considering the explicit correlations between sibling nodes that reply to the same target.
  4. ClaHi-GAT In this paper, we propose to model the conversation thread as an undirected interaction graph for our claim-guided hierarchical graph attention networks.

  

3.5 Early Rumor Detection

   

  关键点:随着 claim 的传播,或多或少会产生更多的语义信息和噪声,所以使用 claim 的信息至关重要。

  举例说明:false claim 的注意力分数得分图如下:

  

  言下之意:错误的 post $x_2$ 会被赋予较小的权重,这就是为什么该模型早期谣言检测比较稳定的原因。

谣言检测(ClaHi-GAT)《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》的更多相关文章

  1. 论文解读(RvNN)《Rumor Detection on Twitter with Tree-structured Recursive Neural Networks》

    论文信息 论文标题:Rumor Detection on Twitter with Tree-structured Recursive Neural Networks论文作者:Jing Ma, Wei ...

  2. 谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》

    论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论 ...

  3. 谣言检测——《MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection》

    论文信息 论文标题:MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection论文作者:Jiaqi Zheng, ...

  4. 谣言检测——(PSA)《Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks》

    论文信息 论文标题:Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks论文作者:Jiayin ...

  5. 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》

    论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...

  6. 谣言检测(PLAN)——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》

    论文信息 论文标题:Interpretable Rumor Detection in Microblogs by Attending to User Interactions论文作者:Ling Min ...

  7. 谣言检测(RDEA)《Rumor Detection on Social Media with Event Augmentations》

    论文信息 论文标题:Rumor Detection on Social Media with Event Augmentations论文作者:Zhenyu He, Ce Li, Fan Zhou, Y ...

  8. 谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》

    论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu ...

  9. 谣言检测()《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

    论文信息 论文标题:Rumor Detection with Self-supervised Learning on Texts and Social Graph论文作者:Yuan Gao, Xian ...

随机推荐

  1. 【Azure 应用服务】PHP应用部署在App Service for Linux环境中,上传文件大于1MB时,遇见了413 Request Entity Too Large 错误的解决方法

    问题描述 在PHP项目部署在App Service后,上传文件如果大于1MB就会遇见 413 Request Entity Too Large 的问题. 问题解决 目前这个问题,首先需要分析应用所在的 ...

  2. js屏蔽浏览器默认事件

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  3. Vue3 computed && watch(watchEffect)

    1 # Vue3 计算属性与监视 2 # 1.computed函数:与Vue2.x中的computed配置功能一致 3 inport {ref,computed,watch} from 'vue'; ...

  4. 从零开始Blazor Server(6)--基于策略的权限验证

    写这个的原因 现在BootstrapBlazor处于大更新时期,Menu组件要改为泛型模式. 本来我们的这一篇应该是把Layout改了,但是改Layout肯定要涉及到菜单,如果现在写了呢,就进入一个发 ...

  5. 技术分享|闪回在MySQL中的实现和改进

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 3306π 福州站,以下内容是由万里数据库,研发工程师唐洁分享的MySQL闪回方案完整PPT. Enjoy GreatSQ ...

  6. 【Maui正式版】创建可跨平台的Maui程序,以及有关依赖注入、MVVM双向绑定的实现和演示

    前言:Maui终于在昨天(2022年8月9日)推送出来了.今儿就迫不及待来把玩一下先. A.我本地已有VS2022,不过版本比较老,此处选择更新.工具 -> 获取功能和更新里面,可以获取到新版本 ...

  7. mysql 8.0.28 查询语句执行顺序实测结果

    TL;NRs 根据实测结果,MySQL8.0.28 中 SQL 语句的执行顺序为: (8) SELECT (5) DISTINCT <select_list> (1) FROM <l ...

  8. Git 04 项目搭建

    参考源 https://www.bilibili.com/video/BV1FE411P7B3?spm_id_from=333.999.0.0 版本 本文章基于 Git 2.35.1.2 创建工作目录 ...

  9. kali下安装Nessus

    Kali安装Nessus 说明 Nessus是一款基于插件的系统漏洞扫描和分析软件 一.安装 1.下载安装包 https://www.tenable.com/downloads/nessus 查看ka ...

  10. 【HMS core】【FAQ】典型问题合集7

    ​1.[HMS core][Account Kit][问题描述] 集成华为帐号服务后,登录服务异常,无法获取用户信息,报statusCode为907135001,抓取报错日志:Failed to re ...