1.3 Apache Hadoop的重要组成-hadoop-最全最完整的保姆级的java大数据学习资料
1.3 Apache Hadoop的重要组成
Hadoop=HDFS(分布式文件系统)+MapReduce(分布式计算框架)+Yarn(资源协调框架)+Common模块
- Hadoop HDFS:(Hadoop Distribute File System )一个高可靠、高吞吐量的分布式文件系统
比如:100T数据存储, “分而治之” 。分:拆分-->数据切割,100T数据拆分为10G一个数据块由一个电脑节点存储这个数据块。
数据切割、制作副本、分散储存
图中涉及到几个角色
NameNode(nn):存储文件的元数据,比如文件名、文件目录结构、文件属性(生成时间、副 本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
SecondaryNameNode(2nn):辅助NameNode更好的工作,用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据快照。
DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验
注意:NN,2NN,DN这些既是角色名称,进程名称,代指电脑节点名称!!
Hadoop MapReduce:一个分布式的离线并行计算框架
拆解任务、分散处理、汇整结果
MapReduce计算 = Map阶段 + Reduce阶段Map阶段就是“分”的阶段,并行处理输入数据
Reduce阶段就是“合”的阶段,对Map阶段结果进行汇总
Hadoop YARN:作业调度与集群资源管理的框架
计算资源协调
Yarn中有如下几个主要角色,同样,既是角色名、也是进程名,也指代所在计算机节点名称。
ResourceManager(rm):处理客户端请求、启动/监控ApplicationMaster、监控NodeManager、资源分配与调度;
NodeManager(nm):单个节点上的资源管理、处理来自ResourceManager的命令、处理来自ApplicationMaster的命令;
ApplicationMaster(am):数据切分、为应用程序申请资源,并分配给内部任务、任务监控与容错。
Container:对任务运行环境的抽象,封装了CPU、内存等多维资源以及环境变量、启动命令等任务运行相关的信息。
ResourceManager是老大,NodeManager是小弟,ApplicationMaster是计算任务专员。
- Hadoop Common:支持其他模块的工具模块(Configuration、RPC、序列化机制、日志操作)
1.3 Apache Hadoop的重要组成-hadoop-最全最完整的保姆级的java大数据学习资料的更多相关文章
- 大数据学习之Hadoop快速入门
1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效 ...
- 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...
- 大数据学习系列之六 ----- Hadoop+Spark环境搭建
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...
- 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...
- 大数据学习笔记——Hadoop编程实战之HDFS
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程 ...
- java大数据最全课程学习笔记(1)--Hadoop简介和安装及伪分布式
Hadoop简介和安装及伪分布式 大数据概念 大数据概论 大数据(Big Data): 指无法在一定时间范围内用常规软件工具进行捕捉,管理和处理的数据集合,是需要新处理模式才能具有更强的决策力,洞察发 ...
- 大数据学习(一) | 初识 Hadoop
作者: seriouszyx 首发地址:https://seriouszyx.top/ 代码均可在 Github 上找到(求Star) 最近想要了解一些前沿技术,不能一门心思眼中只有 web,因为我目 ...
- 大数据学习系列之一 ----- Hadoop环境搭建(单机)
一.环境选择 1,服务器选择 阿里云服务器:入门型(按量付费) 操作系统:linux CentOS 6.8 Cpu:1核 内存:1G 硬盘:40G ip:39.108.77.250 2,配置选择 JD ...
- 大数据学习(1)Hadoop安装
集群架构 Hadoop的安装其实就是HDFS和YARN集群的配置,从下面的架构图可以看出,HDFS的每一个DataNode都需要配置NameNode的位置.同理YARN中的每一个NodeManager ...
- 大数据学习系列之八----- Hadoop、Spark、HBase、Hive搭建环境遇到的错误以及解决方法
前言 在搭建大数据Hadoop相关的环境时候,遇到很多了很多错误.我是个喜欢做笔记的人,这些错误基本都记载,并且将解决办法也写上了.因此写成博客,希望能够帮助那些搭建大数据环境的人解决问题. 说明: ...
随机推荐
- Elasticsearch:fielddata 介绍
默认情况下,大多数字段都已编入索引,这使它们可搜索. 但是,脚本中的排序,聚合和访问字段值需要与搜索不同的访问模式. 搜索需要回答"哪个文档包含该术语?"这个问题,而排序和汇总则需 ...
- Elasticsearch 主从同步之跨集群复制
文章转载自:https://mp.weixin.qq.com/s/alHHxXont6XFm_m9PfsGfw 1.什么是跨集群复制? 跨集群复制(Cross-cluster replication, ...
- 数据卷Volume
数据卷概述 Kubernetes Volume(数据卷)主要解决了如下两方面问题: 数据持久性:通常情况下,容器运行起来之后,写入到其文件系统的文件暂时性的.当容器崩溃后,kubelet 将会重启该容 ...
- 跳转控制语句break
执行某些循环时,当满足了某个条件,使其提早退出循环,便可以使用break跳出循环 流程图如下: 其他循环均可以以此类推 例子:
- Flink的异步算子的原理及使用
1.简介 Flink的特点是高吞吐低延迟.但是Flink中的某环节的数据处理逻辑需要和外部系统交互,调用耗时不可控会显著降低集群性能.这时候就可能需要使用异步算子让耗时操作不需要等待结果返回就可以继续 ...
- 7.RabbitMQ系列之topic主题交换器
topic主题交换器它根据在队列绑定的路由键和路由模式通配符匹配将消息路由到队列. 生产者在消息头中添加路由键并将其发送到主题交换器. 收到消息后,exchange尝试将路由键与绑定到它的所有队列的绑 ...
- 20220729 - DP训练 #2
20220729 - DP训练 #2 时间记录 \(8:00-8:10\) 浏览题面 \(8:10-8:50\) T1 看题想到了建树,从每一个点遍历,若能遍历每一个点,则可以获胜 快速写完之后,发现 ...
- <jsp:useBean>动作的使用
jsp:useBean动作的使用 jsp:useBean动作用于在指定的范围内寻找指定名称的JavaBean对象,如果找到,则返回该对象的引用可以操作里边的属性.如果没有找到则重新实例化一个对象.并且 ...
- java:找不到符号
出现这种情况的原因之一:实体类的字段修改过.实体类中的变量名修改.然而其他地方调用的字段名还是修改之前的变量.
- SQL--临时表的使用
临时表的创建 临时表分为:本地临时表和全局临时表 通俗区分: 本地临时表:只能在当前查询页面使用,新开的查询是不能使用它的 #temp 全局临时表:不管开多少查询页面都可以使用 ##temp ...