最 近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature、LibMF、LibFM等,也有重 量级的适用于工业系统的 Mahout、Oryx、EasyRecd等,供大家参考。PS:这里的top 10仅代表个人观点。

#1.SVDFeature

主页:http://svdfeature.apexlab.org/wiki/Main_Page 语言:C++
一个feature-based协同过滤和排序工具,由上海交大Apex实验室开发,代码质量较高。在KDD Cup 2012中获得第一名,KDD Cup 2011中获得第三名,相关论文 发表在2012的JMLR中,这足以说明它的高大上。
SVDFeature 包含一个很灵活的Matrix Factorization推荐框架,能方便的实现SVD、SVD++等方法,  是单模型推荐算法中精度最高的一种。SVDFeature代码精炼,可以用 相对较少的内存实现较大规模的单机版矩阵分解运算。另外含有Logistic  regression的model,可以很方便的用来进行ensemble。

#2.LibMF

主页:http://www.csie.ntu.edu.tw/~cjlin/libmf/ 语言:C++
作者Chih-Jen Lin来自大名鼎鼎的台湾国立大学,他们在机器学习领域享有盛名,近年连续多届KDD Cup竞赛上均 获得优异成绩,并曾连续多年获得冠军。台湾大学的风格非常务实,业界常用的LibSVM, Liblinear等都是他们开发的,开源代码的效率和质量都非常高。
LibMF 在矩阵分解的并行化方面作出了很好的贡献,针对SGD(随即梯度下降)优化方法在并行计算中存在的locking problem和memory  discontinuity问题,提出了一种 矩阵分解的高效算法FPSGD(Fast Parallel  SGD),根据计算节点的个数来划分评分矩阵block,并分配计算节点。系统介绍可以见这篇 论文(ACM Recsys 2013的 Best paper Award)。

#3.LibFM

主页:http://www.libfm.org/ 语言:C++
作者是德国Konstanz大学的Steffen Rendle,他用LibFM同时玩转KDD Cup 2012 Track1和Track2两个子竞赛单元,都取得了很好的成绩,说明LibFM是非常管用的利器。
LibFM 是专门用于矩阵分解的利器,尤其是其中实现了MCMC(Markov Chain Monte  Carlo)优化算法,比常见的SGD优化方法精度要高,但运算速度要慢一些。当然LibFM中还 实现了SGD、SGDA(Adaptive  SGD)、ALS(Alternating Least Squares)等算法。

#4.Lenskit

主页:http://lenskit.grouplens.org/ 语言Java

这个Java开发的开源推荐系统,来自美国的明尼苏达大学的GroupLens团队,也是推荐领域知名的测试数据集Movielens的作者。
该源码托管在GitHub上,https://github.com/grouplens/lenskit。 主要包含lenskit-api,lenskit-core,  lenskit-knn,lenskit-svd,lenskit-slopone,lenskit-parent,lenskit-data- structures,lenskit-eval,lenskit-test等模块,主要实现了k-NN,SVD,Slope-One等  典型的推荐系统算法。

#5.GraphLab

主页:GraphLab - Collaborative Filtering 语言:C++
Graphlab 是基于C++开发的一个高性能分布式graph处理挖掘系统,特点是对迭代的并行计算处理能力强(这方面是hadoop的弱项),由于功能独 到,GraphLab在业界名声很响。 用GraphLab来进行大数据量的random  walk或graph-based的推荐算法非常有效。Graphlab虽然名气比较响亮(CMU开发),但是对一般数据量的应用来说可能还用不上。
GraphLab 主要实现了ALS,CCD++,SGD,Bias-SGD,SVD++,Weighted-ALS,Sparse-ALS,Non-negative  Matrix Factorization,Restarted Lanczos Algorithm等算法。

#6.Mahout

主页:http://mahout.apache.org/ 语言:Java
Mahout  是 Apache Software Foundation (ASF)  开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费 使用。Mahout项目是由  Apache Lucene社区中对机器学习感兴趣的一些成员发起的,他们希望建立一个可靠、文档翔实、可伸缩的项目,在其中实现一些常见的用于  聚类和分类的机器学习算法。该社区最初基于 Ngetal. 的文章 “Map-Reduce for Machine Learning on  Multicore”,但此后在发展中又并入了更多广泛的机器学习 方法,包括Collaborative  Filtering(CF),Dimensionality Reduction,Topic Models等。此外,通过使用 Apache  Hadoop 库,Mahout 可以有效地扩展到云中。
在Mahout的Recommendation类算法中,主要有User-Based CF,Item-Based CF,ALS,ALS on Implicit Feedback,Weighted MF,SVD++,Parallel SGD等。

#7.Myrrix

主页:http://myrrix.com/ 语言:Java
Myrrix 最初是Mahout的作者之一Sean  Owen基于Mahout开发的一个试验性质的推荐系统。目前Myrrix已经是一个完整的、实时的、可扩展的集群和推荐系统,主要  架构分为两部分:服务层:在线服务,响应请求、数据读入、提供实时推荐;计算层:用于分布式离线计算,在后台使用分布式机器学习算法为服务层更新机器学习   模型。Myrrix使用这两个层构建了一个完整的推荐系统,服务层是一个HTTP服务器,能够接收更新,并在毫秒级别内计算出更新结果。服务层可以单独使 用,无需 计算层,它会在本地运行机器学习算法。计算层也可以单独使用,其本质是一系列的Hadoop jobs。目前Myrrix以被  Cloudera 并入Oryx项目。

#8.EasyRec

主页:http://easyrec.org/ 语言:Java
EasyRec 是一个易集成、易扩展、功能强大且具有可视化管理的推荐系统,更像一个完整的推荐产品,包括了数据录入模块、管理模块、推荐挖掘、离线分析等。  EasyRec可以同时给多个不同的网站提供推荐服务,通过tenant来区分不同的网站。架设EasyRec服务器,为网站申请tenant,通过 tenant就可以很方便的集成到  网站中。通过各种不同的数据收集(view,buy.rating)API收集到网站的用户行为,EasyRec通过离线分析,就可以产生推荐信息,您的 网站就可以通过 Recommendations和Community Rankings来进行推荐业务的实现。

#9.Waffles

主页:http://waffles.sourceforge.net/ 语言:C++
Waffles 英文原意是蜂蜜甜饼,在这里却指代一个非常强大的机器学习的开源工具包。Waffles里包含的算法特别多,涉及机器学习的方方面面,推荐系统位于  其中的Waffles_recommend  tool,大概只占整个Waffles的1/10的内容,其它还有分类、聚类、采样、降维、数据可视化、音频处理等许许多多工具包,估计  能与之媲美的也就数Weka了。

#10.RapidMiner

主页:http://rapidminer.com/ 语言:Java
RapidMiner(前 身是Yale)是一个比较成熟的数据挖掘解决方案,包括常见的机器学习、NLP、推荐、预测等方法(推荐只占其中很小一部分),而且带有GUI的  数据分析环境,数据ETL、预处理、可视化、评估、部署等整套系统都有。另外RapidMiner提供commercial  license,提供R语言接口,感觉在向着一个商用的 数据挖掘公司的方向在前进。
======================================分割线======================================

开 源的推荐系统大大小小的还有很多,以上只是介绍了一些在学术界和工业界比较流行的TOP  10,而且基本上都是用C++/Java实现的,在参考资料[1]、[2]中还提  到的有Crab(Python)、CofiRank(C++)、MyMediaLite(.NET/C#)、PREA(Java)、Python- recsys(Python)、Recommendable(Ruby)、Recommenderlab(R)、  Oryx(Java)、recommendify(Ruby)、RecDB(SQL)等等,当然GitHub上还有更多。。。即有适合单机运行的,也有适 合集群的。虽然使用的编程语言不同,但实现 的算法都大同小异,主要是SVD、SGD、ALS、MF、CF及其改进算法等。

参考资料

TOP 10 开源的推荐系统简介的更多相关文章

  1. TOP 10开源的推荐系统简介

    最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重量级的适用于工业系统的 Mahout.Oryx.Eas ...

  2. "淘宝推荐系统简介"分享总结

    概述: 此分享是关于淘宝推荐系统简介 1.推荐引擎就是:如何找到用户感兴趣的东西和以什么形式告诉用户:2.推荐引擎的作用:提高用户忠诚度,提高成交转化率和提高网站交叉销售能力:3.推荐系统核心:产品, ...

  3. 2018 年度码云热门项目排行榜 TOP 10

    2016 年度码云热门项目排行榜 TOP 10 是通过开源项目2016年在码云上的 Watch.Star.Fork 数量来评定的榜单.码云平台发展至今,涌现了越来越多优秀的开源项目,越来越多的开源作者 ...

  4. Web漏洞总结: OWASP Top 10

    本文原创,更多内容可以参考: Java 全栈知识体系.如需转载请说明原处. 开发安全 - OWASP Top 10 在学习安全需要总体了解安全趋势和常见的Web漏洞,首推了解OWASP,因为它代表着业 ...

  5. Top 10 Mistakes Java Developers Make(转)

    文章列出了Java开发者最常犯的是个错误. 1.将数组转换为ArrayList 为了将数组转换为ArrayList,开发者经常会这样做: ? 1 List<String> list = A ...

  6. OWASP TOP 10 2017中文译文

    说明:owasp top 10其实有中文官方版本:本文是按着英文版进行翻译而成. 官方中文版:http://www.owasp.org.cn/owasp-project/OWASPTop102017v ...

  7. 2016 Top 10 Android Library

    过去的 2016 年,开源社区异常活跃,很多个人与公司争相开源自己的项目,让人眼花缭乱,然而有些项目只是昙花一现,有些项目却持久创造价值,为开发者提供了极大的便利,这些终究由时间来判断.今天,我就来整 ...

  8. GitHub 公布 2021 Top 10 博文「GitHub 热点速览」

    作者:HelloGitHub-小鱼干 2021 年在这周彻底同我们告别了,在本周的「News 快读」模块你可以看到过去一年 GitHub 的热门文章,其中有我们熟悉的可能让很多程序员"失业& ...

  9. Favorites of top 10 rules for success

    Dec. 31, 2015 Stayed up to last minute of 2015, 12:00am, watching a few of videos about top 10 rules ...

随机推荐

  1. 入门不容易->先从数组说起

    数据结构,平时用得最多,接触最多的也是数组,先从数组说起. 数组的概念  什么是数组 一组数据,一秒钟可以申明1000个变量的骚操作. 存储相同的类型,连续的存储空间. 最重要的一点:按下标找元素. ...

  2. 民间流转的pytest项目结构设计

    创建上图的pytest项目结构,只需要一条命令即可: tep startproject demo 前提是安装tep0.9.8版本: pip install tep==0.9.8 示例代码单独放在了sa ...

  3. 译<容器网络中OVS-DPDK的性能>

    译<容器网络中OVS-DPDK的性能> 本文来自对Performance of OVS-DPDK in Container Networks的翻译. 概要--网络功能虚拟化(Network ...

  4. laravel7 数据迁移及填充数据

    1:置迁移数据表,创建生成模型和迁移文件: php artisan make:model Article -m 2:接着,在框架中的database/migrations文件夹中找到刚创建的用户表Ar ...

  5. PHP 开发者如何做好密码保护 & Laravel 底层密码存储和验证实现

    随着在线攻击的增多,密码安全越来越重要.作为开发者我们要担负起安全管理.计算哈希和存储用户密码的责任,不管应用是简单的游戏还是绝密商业文件的仓库,都要做到这一点.PHP内置了一些工具,让保护密码变得更 ...

  6. CF1017F题解

    这种板子题怎么能没有min25筛的题解呢??? 题意:给定一个完全和性函数,求其前缀和.其实普通和性函数也能做就是了 \[\sum_{i=1}^n f(i) \] 类似积性函数,我们把这玩意儿在质数幂 ...

  7. Java GUI 实现发送邮件以及附件

    实现代码: 注意点: 需要的jar包:JavaMail API 和Java Activation Framework (JAF) ,下载可参考菜鸟教程 默认使用QQ邮箱发送,需要设置授权,设置--&g ...

  8. 最小生成树MST算法(Prim、Kruskal)

    最小生成树MST(Minimum Spanning Tree) (1)概念 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边,所谓一个 ...

  9. 用iptables封杀内网的bt软件

    我所在的网络情况是这样的!1台FC3和3台win2000组成一个局域网!四台机都接在100m的交换机上.在FC3上有两个网卡eth0接外网 adsl eth1接在交换机.FC3做nat带3台win20 ...

  10. wifi钓鱼

    无线网络的加密方式和破解方式 1.WEP加密及破解 1).WEP加密方式 有线等效保密(wired euivalent pricacy,WEP)协议的使用RC4(rivest cipher4)串流加密 ...