Description

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
17 + 5 + -21 - 15 = -14 
17 + 5 - -21 + 15 = 58 
17 + 5 - -21 - 15 = 28 
17 - 5 + -21 + 15 = 6 
17 - 5 + -21 - 15 = -24 
17 - 5 - -21 + 15 = 48 
17 - 5 - -21 - 15 = 18 
We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5.

You are to write a program that will determine divisibility of sequence of integers.

Input

The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

Output

Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

Sample Input

4 7
17 5 -21 15

Sample Output

Divisible

题意:给你一列整数,在整数间加‘ + ’ 或 ‘ - ‘,使这个算式的值能被k整除。

用dp[ i ][ j ] 表示加上或减去第 i 个数后,所得值取模后的值能否为 j ,所以dp为bool型即可。

状态转移方程:dp[ i ][ abs( j + num[i]) % k] = true;

dp[ i ][ abs( j -  num[i]) % k] = true; (当然,必须满足dp[ i - 1 ][ j ] == true, 才能进行状态转移)

边界条件:dp[ 0 ][ 0 ] = true;

 #include"iostream"
#include"cstdio"
#include"cstring"
#include"algorithm"
#include"map"
#include"set"
#include"stack"
#include"queue"
using namespace std;
const int ms=;
const int mn=;
bool dp[ms][mn];
int a[ms];
int N,K;
void solve()
{
memset(dp,false,sizeof(dp));
dp[][]=true;
for(int i=;i<=N;i++)
for(int j=;j<K;j++)
if(dp[i-][j])
{
dp[i][abs(j+a[i])%K]=true; //涉及一点数论
dp[i][abs(j-a[i])%K]=true;
}
if(dp[N][])
cout<<"Divisible"<<endl;
else
cout<<"Not divisible"<<endl;
return ;
}
int main()
{
cin>>N>>K;
for(int i=;i<=N;i++)
cin>>a[i];
solve();
return ;
}

Divisibility的更多相关文章

  1. cf306 C. Divisibility by Eight(数学推导)

    C. Divisibility by Eight time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  2. 周赛-Clique in the Divisibility Graph 分类: 比赛 2015-08-02 09:02 23人阅读 评论(3) 收藏

    Clique in the Divisibility Graph time limit per test1 second memory limit per test256 megabytes inpu ...

  3. Codeforces Round #306 (Div. 2) C. Divisibility by Eight 暴力

    C. Divisibility by Eight Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...

  4. Divisibility by Eight (数学)

    Divisibility by Eight time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  5. codeforces 630J Divisibility

    J. Divisibility time limit per test 0.5 seconds memory limit per test 64 megabytes input standard in ...

  6. Codeforces Testing Round #12 A. Divisibility 水题

    A. Divisibility Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/597/probl ...

  7. HDU 3335 Divisibility (DLX)

    Divisibility Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  8. light oj 1078 - Integer Divisibility

    1078 - Integer Divisibility   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...

  9. POJ 1745 Divisibility (线性dp)

    Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10598   Accepted: 3787 Des ...

随机推荐

  1. PHP获取Cookie模拟登录

    关键字:CURL Cookie CURLOPT_COOKIEJAR CURLOPT_COOKIEFILE 模拟登录 PHP作者:方倍工作室原文:http://www.cnblogs.com/txw19 ...

  2. hdfs 数据块重分布 sbin/start-balancer.sh -threshold

    数据块重分布sbin/start-balancer.sh -threshold <percentage of disk capacity>percentage of disk capa ...

  3. XML学习笔记(2)--dom4j操作XML

    1. 介绍(四种方式的比较这部分转载自:http://www.blogjava.net/xcp/archive/2010/02/12/312617.html) 1)DOM(JAXP Crimson解析 ...

  4. UVALive 7324 ASCII Addition (模拟)

    ASCII Addition 题目链接: http://acm.hust.edu.cn/vjudge/contest/127407#problem/A Description Nowadays, th ...

  5. C:移位运算符

    1在向右移位时,空出的位是由0填充,还是由符号位的副本填充? 如果被移位的对象是无符号数,那么空出的位将被0填充.如果被位移的对象是有符号数,那么C语言实现既可以用0填充空出的位,也可以用符号位的副本 ...

  6. 使用MySQL正则表达式查询

    MySQL用WHERE子句对正则表达式提供了初步的支持,允许你指定用正则表达式过滤SELECT检索出的数据. REGEXP后所跟的东西作为正则表达式处理. 代码 SELECT prod_name FR ...

  7. 转载JQuery 中empty, remove 和 detach的区别

    转载 http://www.cnblogs.com/lisongy/p/4109420.html .empty()  描述: 从DOM中移除集合中匹配元素的所有子节点. 这个方法不接受任何参数. 这个 ...

  8. Scala List的排序函数sortWith

    //原始方法: //val list=List("abc","bcd","cde") scala> list.sortWith( (s ...

  9. 在数据库各种状态下查询DBID的五大类十种方法汇总

    关于DBID: DBID是DataBase IDentifier的缩写,意思就是数据库的唯一标识符. 这个DBID在数据文件头和控制文件都是存在的,可以用于标示数据文件的归属. 对于不同数据库来说,D ...

  10. OpenNebula Restfull 接口请求示例

    Fri Jun 20 07:28:20 2014 [I]: 10.0.2.2 - - [20/Jun/2014 07:28:20] "POST /vmtemplate HTTP/1.1&qu ...