前一篇中介绍了用HMM做中文分词,对于未登录词(out-of-vocabulary, OOV)有良好的识别效果,但是缺点也十分明显——对于词典中的(in-vocabulary, IV)词却未能很好地识别。主要是因为,HMM本质上是一个Bigram的语法模型,未能深层次地考虑上下文(context)。对于此,本文将介绍更为复杂的二阶HMM以及开源实现。

1. 前言

n-gram语法模型

n-gram语法模型用来:在已知前面\(n-1\)个词\(w_1, \cdots, w_{n-1}\)的情况下,预测下一个词出现的概率:

\[P(w_n | w_1, \cdots, w_{n-1})
\]

常见的n-gram有Unigram(一元)、Bigram(二元)、Trigram(三元),分别表示当前词出现的概率为自身词频、只与前面一个词相关、只与前面两个词相关;对应的计算公式如下:

\begin{align}

\text{Unigram:} \quad & \hat{P} (w_3) = \frac{f(w_3)}{N} \cr

\text{Bigram:} \quad & \hat{P} (w_3|w_2) = \frac{f(w_2, w_3)}{f(w_2)} \cr

\text{Trigram:} \quad &\hat{P} (w_3|w_1,w_2) = \frac{f(w_1, w_2, w_3)}{f(w_1,w_2)} \

\end{align}

其中,\(N\)为语料中总词数,\(f(w_i)\)为词\(w_i\)在语料中出现的次数。

两种CWS模型

中文分词(Chinese word segmentation, CWS)的统计学习模型大致可以分为两类:Word-Based Generative ModelCharacter-Based Discriminative Model [3]. Word-Based Generative Model采用最大联合概率来对最佳分词方案建模,比如,对于句子\(c_1^{n}=c_1, \cdots, c_n\),最佳分词\(w_1^m=w_1, \cdots, w_m\)应满足:

\begin{equation}

\arg \mathop{\max}\limits_{w_1^m} P(w_1^m)

\end{equation}

此模型可以简化为二阶Markov链(second order Markov Chain)——当前词的转移概率只与前两个词相关,即为Trigram语法模型:

\begin{equation}

P(w_1^m) = \prod_{i=1}{m}P(w_i|w_1{i-1}) \approx \prod_{i=1}{m}P(w_i|w_{i-2}{i-1})

\end{equation}

Character-Based Discriminative Model采用类似与POS(Part-of-Speech)那一套序列标注的方法来进行分词:

\begin{equation}

\arg \mathop{\max}\limits_{t_1^n} P(t_1^n | c_1^n)

\label{eq:pos}

\end{equation}

\(t_i\)表示字符\(c_i\)对应的B/M/E/S词标注。

HMM分词

根据贝叶斯定理,式\eqref{eq:pos}可改写为

\[\begin{aligned}
\arg \mathop{\max}\limits_{t_1^n} P(t_1^n | c_1^n) & = \arg \mathop{\max}\limits_{t_1^n} \frac{P(c_1^n | t_1^n) P(t_1^n)}{P(c_1^n)} \\
& = \arg \mathop{\max}\limits_{t_1^n} P(c_1^n | t_1^n) P(t_1^n)\\
\end{aligned}
\]

HMM做了两个基本假设:齐次Markov性假设与观测独立性假设,即

  • 状态(标注)仅与前一状态相关;

\[P(t_{i}|t_{1}^{i-1}) = P(t_i| t_{i-1})
\]

  • 观测相互独立,即字符相对独立:

\[P(c_1^n|t_1^n) = \prod_{i=1}^{n} P(c_i|t_1^n)
\]

  • 观测值依赖于该时刻的状态,即字符的出现仅依赖于标注:

\[P(c_i|t_1^n) = P(c_i | t_i)
\]

将上述三个等式代入下式:

\[\begin{aligned}
P(c_1^n | t_1^n) P(t_1^n) & = \prod_{i=1}^{n} P(c_i|t_1^n) \times [P(t_n|t_{1}^{n-1}) \cdots P(t_i|t_{1}^{i-1}) \cdots P(t_2|t_1)] \\
& = \prod_{i=1}^{n} [P(c_i|t_i) \times P(t_i|t_{i-1})]\\
\end{aligned}
\]

因此,用HMM求解式子\eqref{eq:pos}相当于

\begin{equation}

\arg \mathop{\max}\limits_{t_1^n} \prod_{i=1}^{n} [P(t_i|t_{i-1}) \times P(c_i|t_i)]

\end{equation}

二阶HMM的状态转移依赖于其前两个状态,类似地,分词模型如下:

\begin{equation}

\arg \mathop{\max}\limits_{t_1^n} \left[ \prod_{i=1}^{n} P(t_i|t_{i-1},t_{i-2}) P(c_i|t_i) \right] \times P(t_{n+1}|t_n)

\label{eq:tnt}

\end{equation}

其中,\(t_{-1},t_0,t_{n+1}\)分别表示序列的开始标记与结束标记。

2. TnT

论文[2]基于二阶HMM提出TnT (Trigrams'n'Tags) 序列标注方案,对条件概率\(P(t_3|t_2, t_1)\)采取了如下平滑(smooth)处理:

\[P(t_3|t_2, t_1)=\lambda_1 \hat{P}(t_3) + \lambda_2 \hat{P}(t_3|t_2) + \lambda_3 \hat{P}(t_3|t_2, t_1)
\]

为了求解系数\(\lambda\),TnT提出如下算法:

算法中,如果分母为0则置式子的结果为0.

3. Character-Based Generative Model

鉴于两种CWS模型的利弊:

  • Word-Based Generative Model高召回IV、低召回OOV;
  • Character-Based Discriminative Model高召回OOV,低召回IV

论文[3]结合两者提出了Character-Based Generative Model:

\[\arg \mathop{\max}\limits_{t_1^n} P([c,t]_1^n)= \arg \mathop{\max}\limits_{t_1^n} \prod_{i=1}^n P([c,t]_i | [c,t]_{i-k}^{i-1})
\]

论文[3]中公式6的连乘下标k应为i,猜测应该是作者写错了。

4. 开源实现Snownlp

isnowfy大神在项目Snownlp实现TnT与Character-Based Discriminative Model;并且在博文中给出两者与最大匹配、Word-based Unigram模型的准确率比较,可以看出Generative Model的准确率较高。Snownlp的默认分词方案采用的是CharacterBasedGenerativeModel

from snownlp import SnowNLP

s = SnowNLP('小明硕士毕业于中国科学院计算所,后在日本京都大学深造')
print('/'.join(s.words))
# 小明/硕士/毕业/于/中国/科学院/计算/所/,/后/在/日本/京都/大学/深造
# Jieba HMM: 小明/硕士/毕业于/中国/科学院/计算/所/,/后/在/日/本京/都/大学/深造

通过分析TnTCharacterBasedGenerativeModel源码,发现作者在求解\eqref{eq:tnt}、Generative Model的最大值都是采用穷举法,导致了较低的分词效率。此外,HanLP的作者hankcs大神给出了TnT算法的Java实现

5. 参考资料

[1] Manning, Christopher D., and Hinrich Schütze. Foundations of statistical natural language processing. Vol. 999. Cambridge: MIT press, 1999.

[2] Brants, Thorsten. "TnT: a statistical part-of-speech tagger." Proceedings of the sixth conference on Applied natural language processing. Association for Computational Linguistics, 2000.

[3] Wang, Kun, Chengqing Zong, and Keh-Yih Su. "Which is More Suitable for Chinese Word Segmentation, the Generative Model or the Discriminative One?." PACLIC. 2009.

[4] isnowfy, 几种中文分词算法的比较

[5] hankcs, 基于HMM2-Trigram字符序列标注的中文分词器Java实现.

【中文分词】二阶隐马尔可夫模型2-HMM的更多相关文章

  1. 【中文分词】隐马尔可夫模型HMM

    Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling ...

  2. 【整理】图解隐马尔可夫模型(HMM)

    写在前面 最近在写论文过程中,研究了一些关于概率统计的算法,也从网上收集了不少资料,在此整理一下与各位朋友分享. 隐马尔可夫模型,简称HMM(Hidden Markov Model), 是一种基于概率 ...

  3. 图解隐马尔可夫模型(HMM)

    写在前面 最近在写论文过程中,研究了一些关于概率统计的算法,也从网上收集了不少资料,在此整理一下与各位朋友分享. 隐马尔可夫模型,简称HMM(Hidden Markov Model), 是一种基于概率 ...

  4. 隐马尔可夫模型(HMM)及Viterbi算法

    HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引 ...

  5. Viterbi算法和隐马尔可夫模型(HMM)算法

    隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那 ...

  6. 机器学习中的隐马尔科夫模型(HMM)详解

    机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶 ...

  7. 隐马尔可夫模型(HMM)总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项(算法过程,调参等注意事项) 5.实现和具体例子 6.适用场合 内容: 1.算法概述 隐马尔科夫模型(Hidden Markov ...

  8. 自然语言处理---用隐马尔科夫模型(HMM)实现词性标注---1998年1月份人民日报语料---learn---test---evaluation---Demo---java实现

    先放上一张Demo的测试图 测试的句子及每个分词的词性标注为:   目前/t 这/rzv 条/q 高速公路/n 之间/f 的/ude1 路段/n 已/d 紧急/a 封闭/v ./w 需要基础知识 HM ...

  9. 隐马尔可夫模型(HMM) 学习笔记

    在中文标注时,除了条件随机场(crf),被提到次数挺多的还有隐马尔可夫(HMM),通过对<统计学习方法>一书的学习,我对HMM的理解进一步加深了. 第一部分 介绍隐马尔可夫 隐马尔可夫模型 ...

  10. 隐马尔可夫模型:HMM

    隐马尔可夫模型求解三大问题实例剖析 HMM 模型如图所示: 一.隐马尔可夫模型定义 隐马尔可夫模型由初始概率分布.状态转移概率分布以及观测概率分布确定. 设 Q(图中的q)是所有可能的状态的集合,V( ...

随机推荐

  1. 【原】AFNetworking源码阅读(六)

    [原]AFNetworking源码阅读(六) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这一篇的想讲的,一个就是分析一下AFSecurityPolicy文件,看看AF ...

  2. .net windows Kafka 安装与使用入门(入门笔记)

    完整解决方案请参考: Setting Up and Running Apache Kafka on Windows OS   在环境搭建过程中遇到两个问题,在这里先列出来,以方便查询: 1. \Jav ...

  3. C# 给word文档添加水印

    和PDF一样,在word中,水印也分为图片水印和文本水印,给文档添加图片水印可以使文档变得更为美观,更具有吸引力.文本水印则可以保护文档,提醒别人该文档是受版权保护的,不能随意抄袭.前面我分享了如何给 ...

  4. MediatorPattern(中介者模式)

    /** * 中介者模式 * @author TMAC-J * 研究了这么多设计模式,觉得无非就是几点: * 1.若两个类有耦合关系,设立一个中间类,处理两个类的关系,把两个类的耦合降低 * 2.面向接 ...

  5. mysql 赋予用户权限

    # 赋予权限MySQL> grant 权限参数 on 数据库名称.表名称 to 用户名@用户地址 identified by '用户密码'; # 立即生效权限MySQL> flush pr ...

  6. linux启动SSH及开机自动启动

    本文地址 分享提纲: 1.查看是否启动 2. 设置自动启动 1.[查看是否启动] 启动SSH服务 “/etc/init.d/sshd start”.然后用netstat -antulp | grep ...

  7. 搭建TFS 2015 Build Agent环境(一)

    Download the build agent Downloading the build agent is really simple. Navigate to your TFS control ...

  8. [计算机网络]简易http server程序

    好久没输出了,知识还是要写下总结才能让思路更加清晰.最近在学习计算机网络相关的知识,来聊聊如何编写一个建议的HTTP服务器. 这个http server的实现源代码我放在了我的github上,有兴趣的 ...

  9. [PHP源码阅读]array_pop和array_shift函数

    上篇文章介绍了PHP添加元素到数组的函数,那么当然有从数组中删除元素.array_pop和array_shift只从数组的头或尾删除一个元素.经过阅读源码,发现这两个函数的实现都是调用了同一个函数-- ...

  10. Storm构建分布式实时处理应用初探

    最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop, ...