StdRandom.java
/*************************************************************************
* Compilation: javac StdRandom.java
* Execution: java StdRandom
* Dependencies: StdOut.java
*
* A library of static methods to generate pseudo-random numbers from
* different distributions (bernoulli, uniform, gaussian, discrete,
* and exponential). Also includes a method for shuffling an array.
*
*
* % java StdRandom 5
* seed = 1316600602069
* 59 16.81826 true 8.83954 0
* 32 91.32098 true 9.11026 0
* 35 10.11874 true 8.95396 3
* 92 32.88401 true 8.87089 0
* 72 92.55791 true 9.46241 0
*
* % java StdRandom 5
* seed = 1316600616575
* 96 60.17070 true 8.72821 0
* 79 32.01607 true 8.58159 0
* 81 59.49065 true 9.10423 1
* 96 51.65818 true 9.02102 0
* 99 17.55771 true 8.99762 0
*
* % java StdRandom 5 1316600616575
* seed = 1316600616575
* 96 60.17070 true 8.72821 0
* 79 32.01607 true 8.58159 0
* 81 59.49065 true 9.10423 1
* 96 51.65818 true 9.02102 0
* 99 17.55771 true 8.99762 0
*
*
* Remark
* ------
* - Relies on randomness of nextDouble() method in java.util.Random
* to generate pseudorandom numbers in [0, 1).
*
* - This library allows you to set and get the pseudorandom number seed.
*
* - See http://www.honeylocust.com/RngPack/ for an industrial
* strength random number generator in Java.
*
*************************************************************************/ import java.util.Random; /**
* <i>Standard random</i>. This class provides methods for generating
* random number from various distributions.
* <p>
* For additional documentation, see <a href="http://introcs.cs.princeton.edu/22library">Section 2.2</a> of
* <i>Introduction to Programming in Java: An Interdisciplinary Approach</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public final class StdRandom { private static Random random; // pseudo-random number generator
private static long seed; // pseudo-random number generator seed // static initializer
static {
// this is how the seed was set in Java 1.4
seed = System.currentTimeMillis();
random = new Random(seed);
} // don't instantiate
private StdRandom() { } /**
* Sets the seed of the psedurandom number generator.
*/
public static void setSeed(long s) {
seed = s;
random = new Random(seed);
} /**
* Returns the seed of the psedurandom number generator.
*/
public static long getSeed() {
return seed;
} /**
* Return real number uniformly in [0, 1).
*/
public static double uniform() {
return random.nextDouble();
} /**
* Returns an integer uniformly between 0 (inclusive) and N (exclusive).
* @throws IllegalArgumentException if <tt>N <= 0</tt>
*/
public static int uniform(int N) {
if (N <= 0) throw new IllegalArgumentException("Parameter N must be positive");
return random.nextInt(N);
} ///////////////////////////////////////////////////////////////////////////
// STATIC METHODS BELOW RELY ON JAVA.UTIL.RANDOM ONLY INDIRECTLY VIA
// THE STATIC METHODS ABOVE.
/////////////////////////////////////////////////////////////////////////// /**
* Returns a real number uniformly in [0, 1).
* @deprecated clearer to use {@link #uniform()}
*/
public static double random() {
return uniform();
} /**
* Returns an integer uniformly in [a, b).
* @throws IllegalArgumentException if <tt>b <= a</tt>
* @throws IllegalArgumentException if <tt>b - a >= Integer.MAX_VALUE</tt>
*/
public static int uniform(int a, int b) {
if (b <= a) throw new IllegalArgumentException("Invalid range");
if ((long) b - a >= Integer.MAX_VALUE) throw new IllegalArgumentException("Invalid range");
return a + uniform(b - a);
} /**
* Returns a real number uniformly in [a, b).
* @throws IllegalArgumentException unless <tt>a < b</tt>
*/
public static double uniform(double a, double b) {
if (!(a < b)) throw new IllegalArgumentException("Invalid range");
return a + uniform() * (b-a);
} /**
* Returns a boolean, which is true with probability p, and false otherwise.
* @throws IllegalArgumentException unless <tt>p >= 0.0</tt> and <tt>p <= 1.0</tt>
*/
public static boolean bernoulli(double p) {
if (!(p >= 0.0 && p <= 1.0))
throw new IllegalArgumentException("Probability must be between 0.0 and 1.0");
return uniform() < p;
} /**
* Returns a boolean, which is true with probability .5, and false otherwise.
*/
public static boolean bernoulli() {
return bernoulli(0.5);
} /**
* Returns a real number with a standard Gaussian distribution.
*/
public static double gaussian() {
// use the polar form of the Box-Muller transform
double r, x, y;
do {
x = uniform(-1.0, 1.0);
y = uniform(-1.0, 1.0);
r = x*x + y*y;
} while (r >= 1 || r == 0);
return x * Math.sqrt(-2 * Math.log(r) / r); // Remark: y * Math.sqrt(-2 * Math.log(r) / r)
// is an independent random gaussian
} /**
* Returns a real number from a gaussian distribution with given mean and stddev
*/
public static double gaussian(double mean, double stddev) {
return mean + stddev * gaussian();
} /**
* Returns an integer with a geometric distribution with mean 1/p.
* @throws IllegalArgumentException unless <tt>p >= 0.0</tt> and <tt>p <= 1.0</tt>
*/
public static int geometric(double p) {
if (!(p >= 0.0 && p <= 1.0))
throw new IllegalArgumentException("Probability must be between 0.0 and 1.0");
// using algorithm given by Knuth
return (int) Math.ceil(Math.log(uniform()) / Math.log(1.0 - p));
} /**
* Return an integer with a Poisson distribution with mean lambda.
* @throws IllegalArgumentException unless <tt>lambda > 0.0</tt> and not infinite
*/
public static int poisson(double lambda) {
if (!(lambda > 0.0))
throw new IllegalArgumentException("Parameter lambda must be positive");
if (Double.isInfinite(lambda))
throw new IllegalArgumentException("Parameter lambda must not be infinite");
// using algorithm given by Knuth
// see http://en.wikipedia.org/wiki/Poisson_distribution
int k = 0;
double p = 1.0;
double L = Math.exp(-lambda);
do {
k++;
p *= uniform();
} while (p >= L);
return k-1;
} /**
* Returns a real number with a Pareto distribution with parameter alpha.
* @throws IllegalArgumentException unless <tt>alpha > 0.0</tt>
*/
public static double pareto(double alpha) {
if (!(alpha > 0.0))
throw new IllegalArgumentException("Shape parameter alpha must be positive");
return Math.pow(1 - uniform(), -1.0/alpha) - 1.0;
} /**
* Returns a real number with a Cauchy distribution.
*/
public static double cauchy() {
return Math.tan(Math.PI * (uniform() - 0.5));
} /**
* Returns a number from a discrete distribution: i with probability a[i].
* throws IllegalArgumentException if sum of array entries is not (very nearly) equal to <tt>1.0</tt>
* throws IllegalArgumentException unless <tt>a[i] >= 0.0</tt> for each index <tt>i</tt>
*/
public static int discrete(double[] a) {
double EPSILON = 1E-14;
double sum = 0.0;
for (int i = 0; i < a.length; i++) {
if (!(a[i] >= 0.0)) throw new IllegalArgumentException("array entry " + i + " must be nonnegative: " + a[i]);
sum = sum + a[i];
}
if (sum > 1.0 + EPSILON || sum < 1.0 - EPSILON)
throw new IllegalArgumentException("sum of array entries does not approximately equal 1.0: " + sum); // the for loop may not return a value when both r is (nearly) 1.0 and when the
// cumulative sum is less than 1.0 (as a result of floating-point roundoff error)
while (true) {
double r = uniform();
sum = 0.0;
for (int i = 0; i < a.length; i++) {
sum = sum + a[i];
if (sum > r) return i;
}
}
} /**
* Returns a real number from an exponential distribution with rate lambda.
* @throws IllegalArgumentException unless <tt>lambda > 0.0</tt>
*/
public static double exp(double lambda) {
if (!(lambda > 0.0))
throw new IllegalArgumentException("Rate lambda must be positive");
return -Math.log(1 - uniform()) / lambda;
} /**
* Rearrange the elements of an array in random order.
*/
public static void shuffle(Object[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
Object temp = a[i];
a[i] = a[r];
a[r] = temp;
}
} /**
* Rearrange the elements of a double array in random order.
*/
public static void shuffle(double[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
double temp = a[i];
a[i] = a[r];
a[r] = temp;
}
} /**
* Rearrange the elements of an int array in random order.
*/
public static void shuffle(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
} /**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(Object[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length) {
throw new IndexOutOfBoundsException("Illegal subarray range");
}
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
Object temp = a[i];
a[i] = a[r];
a[r] = temp;
}
} /**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(double[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length) {
throw new IndexOutOfBoundsException("Illegal subarray range");
}
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
double temp = a[i];
a[i] = a[r];
a[r] = temp;
}
} /**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(int[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length) {
throw new IndexOutOfBoundsException("Illegal subarray range");
}
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
} /**
* Unit test.
*/
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
if (args.length == 2) StdRandom.setSeed(Long.parseLong(args[1]));
double[] t = { .5, .3, .1, .1 }; StdOut.println("seed = " + StdRandom.getSeed());
for (int i = 0; i < N; i++) {
StdOut.printf("%2d " , uniform(100));
StdOut.printf("%8.5f ", uniform(10.0, 99.0));
StdOut.printf("%5b " , bernoulli(.5));
StdOut.printf("%7.5f ", gaussian(9.0, .2));
StdOut.printf("%2d " , discrete(t));
StdOut.println();
} String[] a = "A B C D E F G".split(" ");
for (String s : a)
StdOut.print(s + " ");
StdOut.println();
} }
StdRandom.java的更多相关文章
- 常用算法之排序(Java)
一.常用算法(Java实现) 1.选择排序(初级算法) 原理:有N个数据则外循环就遍历N次并进行N次交换.内循环实现将外循环当前的索引i元素与索引大于i的所有元素进行比较找到最小元素索引,然后外循环进 ...
- 612.1.004 ALGS4 | Elementary Sorts - 基础排序算法
sublime编辑器写代码,命令行编译 减少对ide的依赖//可以提示缺少什么依赖import 所有示例代码动手敲一遍 Graham's Scan是经典的计算几何算法 shffule 与 map-re ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-005计测试算法
1. package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; / ...
- Spark案例分析
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...
- java 线性规划 和lingo 比较
model:max=13*A+ 23*B; 5*A + 15*B <480 ; 4*A + 4 *B <160 ; 35* A + 20 *B <1190 ; end Variabl ...
- Rolls.java (page44)
对象的数组:模拟T次投掷骰子的Counter对象的用例: Rolls.java 如下:所用类列表:Counter, StdOut, StdRandom 见page42 public class Rol ...
- 算法9-5:最大流算法的Java代码
残留网络 在介绍最大流算法之前先介绍一下什么是残留网络.残余网络的概念有点类似于集合中的补集概念. 下图是残余网络的样例. 上面的网络是原始网络.以下的网络是计算出的残留网络.残留网络的作用就是用来描 ...
- 散列表(拉链法与线性探测法)Java实现
package practice; import java.security.Principal; import java.util.Scanner; import edu.princeton.cs. ...
- 6种基础排序算法java源码+图文解析[面试宝典]
一.概述 作为一个合格的程序员,算法是必备技能,特此总结6大基础算法.java版强烈推荐<算法第四版>非常适合入手,所有算法网上可以找到源码下载. PS:本文讲解算法分三步:1.思想2.图 ...
随机推荐
- sql server中的decimal或者numeric的精度问题
何谓精度:最多可以存储的十进制数字的总位数,包括小数点左边和右边的位数.该精度必须是从 1 到最大精度 38 之间的值.默认精度为 18. 小数位数:小数点右边可以存储的十进制数字的最大位数.小数位数 ...
- How Tomcat Works(四)
Servlet容器有两个主要的模块,即连接器(connector)与容器(container),本文接下来创建一个连接器来增强前面文章中的应用程序的功能,以一种更优雅的方式来创建request对象和r ...
- oracle 空值与 null
Oracle中的空字符串基本上是被当成空NULL来处理的,我们可以从下面的得到印证. select nvl('','NULL') from dual 返回 'NULL' select ...
- QA技能必备
一 常用Linux命令 二 自动化工具
- C# List 中 Find 方法
实例化一个集合 List<User> userCollection = new List<User>(); userCollection.Add(new User(1, &qu ...
- javascript js 内存泄露工具使用
javascript内存泄露工具使用 原文:http://lanhy2000.blog.163.com/blog/static/43678608201121472644851/ 2011-03-14 ...
- Oracle复制表结构和表数据
一, 复制表结构及数据 create table z_xudebiao_test as select * from v_topic v where v.adddate > to_date('20 ...
- 全代码实现ios-4
刚开始开发的时候,也曾经想用IB或Storyboard. 不过看了许多篇关于IB和Storyboard的操作文档后仍然是糊里糊涂,不由得怀疑自己的IQ. 可不可以全代码实现ios开发?当时我想. 不过 ...
- C#利用SharpZipLib解压或压缩文件夹实例操作
最近要做一个项目涉及到C#中压缩与解压缩的问题的解决方法,大家分享. 这里主要解决文件夹包含文件夹的解压缩问题. )下载SharpZipLib.dll,在http://www.icsharpcode. ...
- Flex圆角矩形
<?xml version="1.0" encoding="utf-8"?> <mx:Application xmlns:mx="h ...