(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$

Solution. By Exercise I.2.2, $A=T^*T$ for some upper triangular $T$ with non-negative diagonals. Thus $$\beex \bea \det A&=\det T^*\cdot \det T\\ &=\per T^*\cdot \per T\\ &=\per(T^*I)\cdot \per(I\cdot T)\\ &\leq \sqrt{\per(T^*T)\cdot \per (I^*I)}\cdot \sqrt{\per(II^*)\cdot \per (T^*T)}\\ &=\per(T^*T)\\ &=\per(A). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. struts2的namespace

    struts2 的命名空间action里的name是个无关紧要的东西,namespace为‘/’表示所有 为‘/名字’,不管怎么访问只要名称空间些对了就不会错,/时你的请求地址可以直接写**Actio ...

  2. vs2008+cmake2.8+OpenCV2.8.4配置过程中OpenCV.sln重编译部分工程失败

    解决方法来自此链接 http://www.tuicool.com/articles/qiQBb2N vs2008+cmake2.8+OpenCV2.8.4配置过程 1.解压opencv2.4.8 2. ...

  3. Android支付接入(五):机锋网

    原地址:http://blog.csdn.net/simdanfeg/article/details/9012083 前边已经陆续跟大家走了一遍运营商和支付宝付费接入,今天跟大家一起看看机锋网的支付接 ...

  4. python参考手册--第4、5、6、7章

    1.zip zip(s,t):将序列组合为一个元组序列[(s[0],t[0]), (s[1],t[1]), (s[2],t[2]), (s[3],t[3]),...] >>> s = ...

  5. 微软的Dll管理方案及其变迁(Side-by-side assembly)

    本文简要介绍Side-by-side assembly技术,探讨在插件技术中使用类似方法的可能. 什么是Side-ty-side Assembly Side-by-side assembly是Wind ...

  6. POJ3282+模拟

    模拟题 /* 模拟 注意:相同一边的车有先后顺序! */ #include<stdio.h> #include<string.h> #include<stdlib.h&g ...

  7. [topcoder]AvoidRoads

    二维动态规划.和某一道leetcode的题目差不多.就是多了blocks的数组或集合. 本次解题的心得有:1.根据题意使用集合表示阻碍:2.使用字符串的形式表示整数的pair,简洁明了:3.p1到p2 ...

  8. 影响pogo pin连接器使用寿命的因素

    精细化.安装简易化及使用寿命长是现在数码电子产品的趋势发展,pogo pin连接器体积小而且弹簧伸缩式设计,可以更好的缩小数码电子产品的尺寸并且连接安装更加的简单方便,因此pogo pin连接器得到了 ...

  9. Photoshop CS4 启动弹出许可协议

    win7:删除 1.C:\Users\All Users\FLEXnet\adobe_00080000_tsf.data WinXP:(c:/Documents and Settings/All Us ...

  10. 使用intellij idea搭建MAVEN+springmvc+mybatis框架

    原文:使用intellij idea搭建MAVEN+springmvc+mybatis框架 1.首先使用idea创建一个maven项目 2.接着配置pom.xml,以下为我的配置 <projec ...