[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$
Solution. By Exercise I.2.2, $A=T^*T$ for some upper triangular $T$ with non-negative diagonals. Thus $$\beex \bea \det A&=\det T^*\cdot \det T\\ &=\per T^*\cdot \per T\\ &=\per(T^*I)\cdot \per(I\cdot T)\\ &\leq \sqrt{\per(T^*T)\cdot \per (I^*I)}\cdot \sqrt{\per(II^*)\cdot \per (T^*T)}\\ &=\per(T^*T)\\ &=\per(A). \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- ios实现截屏(转)
-(UIImage*) makeImage { UIGraphicsBeginImageContext(self.view.bounds.size); [self.view.layer rende ...
- IntPtr
一:什么是IntPtr 先来看看MSDN上说的:用于表示指针或句柄的平台特定类型.这个其实说出了这样两个事实,IntPtr 可以用来表示指针或句柄.它是一个平台特定类型.对于它的解释,这个哥们写的比较 ...
- 团队软件开发_基于windows下截屏软件关于NABC框架的特点
经过我们小组数次的激烈讨论,就自己的能力和时间而言,我们小组的初步的计划是开发一款基于windows下的截图软件. 关于这个软件的功能,我们初步的想法如下: 1.能在windows下后台运行,有相应的 ...
- IntelliJ IDEA 部署Tomcat及创建一个web工程
一.部署Tomcat 二.新建一个web工程 1.新建一个Project 2.现在建立一个简单的web工程,所以只勾选下面选中的,此外,本版本(IntelliJ IDEA 14.1.5只支持3.1版本 ...
- CSS样式表引用方式
最近讲课中,有些学员对调用样式表老是有含糊不清?大体说来有四种方式: 1.外部文件引用方式;(推荐使用) 2.使用@import引用外部CSS文件; 3.内部文档头方式也叫内嵌法调用; 4.直接插入式 ...
- import,reload,__import__在python中的区别
import,reload,__import__在python中的区别 http://blog.csdn.net/five3/article/details/7762870 import作用:导入/引 ...
- Hardwood Species
http://poj.org/problem?id=2418 #include<cstdio> #include<cstring> #include<string> ...
- hdu 3032 Nim or not Nim? 博弈论
这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...
- tomcat 设置默认编码格式
在tomcat目录下 conf文件夹下的server.xml中: <Connector port="80" protocol="HTTP/1.1" ...
- Maven中的一点疑惑的地方
我们建立一个Maven项目,其结构如下: