Problem A:简单的图形覆盖

Time Limit:1000MS  Memory Limit:65536K
Total Submit:201 Accepted:104

Description

有一个2*n的方格,要用若干个1*2的模块覆盖,模块可以横放,也可以竖放.问对于给定的n(n<=100),有多少种不同的覆盖方法.

Input

有多个测试用例,每个用例占一行,为一个正整数n

Output

对于每个测试用例,输出一行相应的结果

Sample Input

9

11

Sample Output

55

144

分析:

f(n)={ 1  n=1

     2  n=2

   f(n-1)+f(n-2) n>2

}

 #include<stdio.h>
int A[];
int main()
{
int n,i;
while(scanf("%d",&n)!=EOF)
{
A[]=;A[]=;
if(n==||n==) printf("%d\n",A[]);
else
{
for(i=;i<n;i++)
A[i]=A[i-]+A[i-];
printf("%d\n",A[i]);
}
}
return ;
}

递归解决

 #include <stdio.h>
#include <string.h>
int A[];
int f(int n)
{
memset(A,-,sizeof(A));
if (A[n]!=-) return A[n];
if(n==||n==)
{
A[n]=;
}
else
{
A[n]=f(n-)+f(n-); }
return A[n];
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
printf("%d\n",f(n));
}
return ;
}

Problem B:最大子段和

Time Limit:1000MS  Memory Limit:65536K
Total Submit:574 Accepted:299

Description

有一组数,如-2 5 4 -3 7 的最大子段和是13, 是从5到7.

Input

第一行输入一个n(1〈 N〈=100 ) 表示这一组数有多长,第二行是N个数. 
测试案例有多个,n=0时结束.

Output

输出这一组数的最大子段和.

Sample Input

5

-2 5 4 -3 7

10

9 -3 8 -28 98 -30 -20 50 -24 10

0

Sample Output

13

98

分析:

A

-2

5

4

-3

7

B 表示A0~Ai数段中包含第i个元素的最大子段和

-2

5

9

6

13

B[i]={

  A[i]   i=0;

  max{ B[i-1]+A[i] , A[i] } i>0;

}

 #include<stdio.h>
int A[];
int B[];
int main()
{
int n,i,max;
scanf("%d",&n);
while(n!=)
{
for(i=;i<n;i++)
scanf("%d",&A[i]);
B[]=A[];
for(i=;i<n;i++)
if(B[i-]<) B[i]=A[i];
else
B[i]=B[i-]+A[i];
/* max=B[0];
for(i=1;i<n;i++) if(max<B[i]) max=B[i];
printf("%d\n",max);
scanf("%d",&n);*/
printf("%d\n",B[n-]); }
return ;
}

Problem C:最长公共子序列

Time Limit:1000MS  Memory Limit:65536K
Total Submit:164 Accepted:99

Description

我们称序列Z=是序列X=的子序列当且仅当存在严格上升的序列,使得对j=1,2,...k,有Xij=Zj.比如Z=<a,b,f,c>是X=<a,b,c,f,b,c>的子序列.现在给出两个序列X和Y,任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列.

Input

输入包括多组测试数据.每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列.两个字符串之间由若干个空格9开.

Output

对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度.

Sample Input

abcfbc  abfcab

programming contest

abcd mnp

Sample Output

4

2

0

分析

Z[i][j]= {

      0  i=0或j=0;

      Z[i-1][j-1]+1  X[i]=Y[j];

      max{ Z[i-1][j] , Z[i][j-1] }  X[i]!=Y[j]

}

下标

0

1

2

3

4

5

6

Z[i][j]

a

b

c

f

b

c

0

0

0

0

0

0

0

0

1

a

0

1

1

1

1

1

1

2

b

0

1

2

2

2

2

2

3

f

0

1

2

2

3

3

3

4

c

0

1

2

3

3

3

4

5

a

0

1

2

3

3

3

4

6

b

0

1

2

3

3

4

4

X,Y下标从0开始,Z[i][j] 下标有效的从1开始

 #include<stdio.h>
#include<string.h>
char x[];
char y[];
int z[][];
int main()
{
int i,j,s,t,max;
while(scanf("%s%s",x,y)!=EOF)
{
s=strlen(x);t=strlen(y);
for(i=;i<s;i++)
z[i][]=;
for(j=;j<t;j++)
z[][j]=;
for(i=;i<=s;i++)
for(j=;j<=t;j++)
{
if(x[i-]==y[j-]) z[i][j]=z[i-][j-]+;
else
{
if(z[i-][j]>=z[i][j-]) z[i][j]=z[i-][j];
else z[i][j]=z[i][j-];
}
}
/* max=z[0][0];
for(i=0;i<=s;i++)
for(j=0;j<=t;j++)
if(z[i][j]>max) max=z[i][j];*/
printf("%d\n",z[s][t]);
} return ;
}

Problem D:最长上升子序列

Time Limit:1000MS  Memory Limit:65536K
Total Submit:456 Accepted:239

Description

一个数的序列bi,当b1<=b2<=b3..<=bn的时候,称这个序列是上升的。对于给定的一个序列(A1,A2,....,AN),可以得到一些上升的子序列(AI1,AI2,....AIK,这里1<=I1<=I2<=....<=IK<=N,比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等.这些子序列中最长的长度是4,比如子序列(1,3,5,8). 
你的任务就是对于给定的序列,求出最长上升子序列的长度.

Input

输入有多个案例,每个案例占两行: 
第一行是序列的长度N(1<=N<=1000).第二行给出序列中的N个整数,这些整数的取值范围都在0到10000.

Output

最长上升子序列的长度.

Sample Input

7

1 7 3 5 9 4 8

2

1036 3

Sample Output

4

1

分析

设置b[N],b[i]表示序列的第1个数到第i个数(保留第i个数)的最长上升子序列的长度。

b[i]=max(b[j])+1(a[j]<a[i],1<=j<=i<=n)

如果a[i]最小,则b[i]=1

A

1

7

3

5

9

4

8

B

1

2

2

3

4

3

4

 #include<stdio.h>
int A[],B[];
int main()
{
int n,i,j,max;
while(scanf("%d",&n)!=EOF)
{
for(i=;i<n;i++)
scanf("%d",&A[i]);
B[]=;
for(i=;i<n;i++)
{
max=;
for(j=;j<i;j++)
if(A[j]<A[i]&&B[j]>max)
max=B[j];
B[i]= max+;
}
max=B[];
for(i=;i<n;i++)
if(max<B[i]) max=B[i];
printf("%d\n",max);
}
return ;
}

DP的简单应用的更多相关文章

  1. ZOJ 4257 MostPowerful(状压DP,简单)

    题目大意:不超过10种气体,两两之间相互碰撞可以产生一定的能量,如a碰b,那么b气体就消失,自身不能碰自身,问最后所能得到的最大能量. 原代码链接:http://blog.csdn.net/accry ...

  2. 数位dp 的简单入门

    时间紧张,就不讲那么详细了. 之前一直被深搜代码误解,以为数位dp 其实就是记忆化深搜...(虽说爆搜确实很舒服而且还好想) 但是后来发现数位dp 的标准格式其实是 预处理 + dp ...... 数 ...

  3. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

  4. PKU 1458 Common Subsequence(最长公共子序列,dp,简单)

    题目 同:ZJU 1733,HDU 1159 #include <stdio.h> #include <string.h> #include <algorithm> ...

  5. dp优化简单总结

    1.二分优化 (使用二分查找优化查找效率) 典型例题:LIS dp[i]保存长度为 i 的上升子序列中最小的结尾,可以用二分查找优化到nlogn 2.数学优化 (通过数学结论减少状态数) 例题1:hd ...

  6. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  7. dp的简单递推笔记1

    (1)转自rockZ的博文 UVa 10328 - Coin Toss (递推) 题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 原题中问出现连续至少k个H的情况,很难下手. ...

  8. 2017-5-14 湘潭市赛 Similar Subsequence 分析+四维dp+一些简单优化

    Similar Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Similar Subsequence For gi ...

  9. 树形DP(简单题)(Y HDU4705)

    题意:给出一个n个节点的树形图,统计{A,B,C}的数量,其中ABC分别是树上三个不同的节点,并且这三个节点不能被一条路径覆盖 分析:对于下图 进行dfs深搜统计,num[u]统计回溯到当前节点u,并 ...

随机推荐

  1. ios开发:OC对象的内存分析

    最近要开始准备找实习单位了,做做笔试题,看看各位大神的面试经历,发现自己要学习的东西真的还有很多,虽然也做过几个的项目,但是真正拿过笔试题一看,才发现自己对基础这方面的东西,确实有点忽视了,所以最近开 ...

  2. C#解析Json格式数据小结

    最近,遇到了一些不同的Json格式的数据,需要做不同处理才能转化为想要得到的结果,这里总结一下. 第一种形式:status中是{}形式,对象 string json = @"{'name': ...

  3. 【转】揭开Socket编程的面纱

    对TCP/IP.UDP.Socket编程这些词你不会很陌生吧?随着网络技术的发展,这些词充斥着我们的耳朵.那么我想问: 1.         什么是TCP/IP.UDP?2.         Sock ...

  4. What is a First Chance Exception?

    Refrences: http://blogs.msdn.com/b/davidklinems/archive/2005/07/12/438061.aspx To be continued...

  5. NSS_01 开始

    工作中一直使用asp.net webform, 最近有一个新的小项目, 决定用asp.net mvc3, 边学习边工作吧,记录一下开发过程中的问题,因为工作嘛,只记录问题,可能不会很详细. 准备使用a ...

  6. DTcms列表隔行换色;loop自带行号

    <%loop cdr2 bcategoryList%> <%if(cdr2__loop__id==1)%> <a class="no-bg" href ...

  7. [DevExpress]ChartControl之创建X,Y轴Title示例

    关键代码: /// <summary> /// 设置X轴Title /// </summary> /// <param name="chart"> ...

  8. MAC机中安装RUBY环境

    在安装CocoaPods之前要先配置好RUBY环境,本文就怎么安装RUBY的环境进行一总结.安装Ruby环境首先需要安装Xcode然后需要安装Homebrew,接下来需要安装RVM最后安装Ruby环境 ...

  9. Redis 与 数据库处理数据的两种模式(转)

    Redis 是一个高性能的key-value数据库. redis的出现,很大程度补偿了memcached这类key-value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用.它提供了Pyt ...

  10. [大牛翻译系列]Hadoop(6)MapReduce 排序:总排序(Total order sorting)

    4.2.2 总排序(Total order sorting) 有的时候需要将作业的的所有输出进行总排序,使各个输出之间的结果是有序的.有以下实例: 如果要得到某个网站中最受欢迎的网址(URL),就需要 ...