http://samza.incubator.apache.org/learn/documentation/0.7.0/introduction/architecture.html

Samza由三层组成:

  1. A streaming layer 消息流层
  2. An execution layer 执行层
  3. A processing layer 处理层

Samza自身提供了对所有三个层的支持:

  1. Streaming : Kafka
  2. Execution: YARN
  3. Processing: Samza API

这三个部分组装到一起构成了Samza:

这个架构遵循了Hadoop的类似模式(使用YARN做为执行层,HDFS做存储,MapReduce做处理层API)

在对这三层的每一层做深入介绍之前,首先要说明下:Samza不仅支持Kafka和YARN。Samza的执行层和消息流层都是pluggable的,并且如果用户喜欢,可以自己实现。

Kafka

Kafka是一个分布式的发布-订阅以及消息队列系统,提供了at least once的消息保证(也就是说这个系统保证了没有消息会丢失,但是在特定的错误情境下,一个consumer可能会收到多于一次的同一条消息),并且高可用的partition(也就是说一个stream的partition即使在机器down掉的情下仍然可用)。

在kafka,每一个流被称为一个topic。每个topic被分区以备份到多个机器上,这些机器叫broker。当一个producer发送一条消息到一个topic,这个producer提供一个key,来决定这个消息应该被送往topic的哪个partition。Kafka broker接收消息,并且存储消息。Kafka consumer可以通过订阅 这个topic的所有partition来读取这个topic(译注:Kafka consumer可以计阅特定的partition,但是要获取一个topic的所有消息,就得订阅这个topic的所有partition)。

Kafka有一些有趣的属性:

  • 发给一个topic的有相同key的消息都被发送往同一个partition。这意味着,如果你想要读关于某个user ID的所有消息,只需要读包括这个user ID的的那个partition,而不是整个topic(假设user ID被当作key)
  • 一个partition是一个消息序列,其顺序为消息到达的顺序,所有你可以使用一个单调递增的offset(就像数组的索引一样)来引用partition里的消息。这意味着broker不用追踪哪个消息被哪个consumer消费过——consumer可以自己记录消费的状态,它只要记录下它消费的最后一条消息的offset就行。(译注:设想如果消息没有offset,当消费者重启时,它该怎么知道自己上次消费到哪了。offset使得服务器端不需要记录消费者的状态,这个状态消费者可以自己维护)。消费者就知道所有offset小于当前offset的消费都已经被处理了;所有offset更大的消息都还没有被处理。

更详细的信息,请看kafka的文档

YARN

YARN(Yet Another Resource Negotiator)是Hadoop的下一代集群调度器。它允许你分派一定数目的 container(进程)到一个集群中,并且在container中执行任意的指令。

当一个应用程序与YARN交互时,看起来就像这样:

  1. 应用程序: 我想要在两台512M内存的机器上运行指令X
  2. YARN: 酷, 你的代码哪呢?
  3. 应用程序: http://path.to.host/jobs/download/my.tgz
  4. YARN:我现在在node-1.grid和node-2.grid上跑你的程序啦

Samza使用YARN来管理其部署、容错、日志记录、资源隔离、安全,以及本地化。下面有一个对YARN的简介;这篇Hortonworks的文章做了一个更好的概述。

YARN的架构

YARN有三个重要的部分:一个资源管理器ResourceManager、一个NodeManager、一个ApplicationMaster。在一个YARN grid中,每个机器运行着一个NodeManager,NodeManager负责在这台机器上启动进程。ResourceManager告诉所有NodeManager它们应该运行什么。当应用程序想要在集群上运行的时候,它会与ResourceManager来对话。第三个部分,ApplicationMaster,实际上是一段应用程序指定的运行在YARN集群上的代码,它负责管理应用程序的工作负荷,请求获取container(通常是UNIX进程),以及当container出现故障时处理通知。

Samza 和 YARN

Samza提供了一个YARN ApplicationMaster和一个自带的YARN job。Samza和YARN的整合用下面的图列出(不同的颜色表示不同的主机)

当Samza client启动一个Samza job时,它与YARN RM进行通信。YARN RN告诉一个YARN NM来在集群上给Samza的ApplicationMaster分配空间。当NM分配好空间以后,它启动Samza AM。当Samza AM启动后,它向YARN RM请求一个或更多的 YARN container来运行Samza TaskRunner。然后,RM和NM一起工作,来为containers安排空间。当空间被分配好了,NM启动Samza containers.

Samza

Samza使用YARN和Kafka来提供一个框架,用于多级流处理和分区stage-wise stream processing and partitioning。所有东西在一起,看来就样(用不同的颜色表示不同的主机)

Samza client使用YARN来运行Samza任务。SamzaTaskRunners运行在一个或更多的YARN containers,并且执行用户输入的Samza StreamTasks. Samza Stream Task的输入和输出都来自Kafka brokers,这些brokers通常和YARN NMs座落在同样的一些机器上。

例子

让我们来看一下真正的例子:假如我们想要计算页面点击量的总数。使用SQL时,你可能会这么写:

SELECT user_id, COUNT(*) FROM PageViewEvent GROUP BY user_id.

虽然Samza现在不支持SQL,但是思想是一致的。这个查询需机两个job:一个将消息按user ID分组,另一个来做计数。

在第一个job里,把有相同user ID的消息发送到一个中间topic的相同partition里,以此来完成分组。为了做到这些,你可以在第一个job里用user ID做为消息的key,这key被映射到中间topic的一个partition(通过对key做哈希,然后对partition数量求模)。第二个job消费中间的topic。第二个job中的每个task,消费中间topic的一个partition,也就是所有user ID的一个子集对应的所有消息。Task对于分配给它的partition里的每一个用户id有一个计数器,每当这个task收到一个消息时,它就会更新这个消息中的user ID对应的计数器。

如果你熟悉Hadoop,你可能把这个认为是一个Map/Reduce操作,在mapper中,每条记录和一个特定的key关联,有相同key的记录被这个框架组织到一起,然后在reducer中进行计数。Hadoop和Samza的不同在于Hadoop操作于确定的输入,而Samza工作于无界的数据流。

kafka接受第一个job发送的消息,并把它们缓存在磁盘,分布在多个机器中。这样来帮助这个系统的容错:如果机器故障了,没有消息会丢失,因为它们被复制到了其它机器上。如果第二个job工作很慢或者因为某些原因停止消费消息,第一个job也不会受影响:磁盘缓存会吸收第一个job积压的消息直到第二个job追赶上来。

通过topic分区,以及把一个流处理分成在多个机器上运行的job和并行的task,Samza可以扩展到可以流处理非常高的消息吞吐量,通过使用YARN和Kafka,Samza实现容错:如果一个处理或者机器down了,它会自动在另一个机器上重启,并且从上次停下来的点继处理。

下一节:对比介绍

Samza文档翻译 : Architecture的更多相关文章

  1. Samza文档翻译 : Concepts

    此页介绍啊Samza的一些高层级概念. Streams Samza处理Streams(流).流由同一类型的不可变的消息组成.例如,一个流可以是对一个网站的所有点击,或者对一个数据库表的所有更新,或者一 ...

  2. Samza文档翻译 : Comparison Introduction

    http://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/introduction.html 这里有一些使得Sam ...

  3. Samza文档翻译 : Backgroud

    这一页提供了关于流处理的背景知识,描述什么是Samza,以及它为何而生. what is messaging?什么叫消息? 消息系统是用来实现近实时异步计算的一种流行方式.当事件发生时,消息可以被放在 ...

  4. Hadoop官方文档翻译——HDFS Architecture 2.7.3

    HDFS Architecture HDFS Architecture(HDFS 架构) Introduction(简介) Assumptions and Goals(假设和目标) Hardware ...

  5. 【转载】Hadoop官方文档翻译——HDFS Architecture 2.7.3

    HDFS Architecture HDFS Architecture(HDFS 架构) Introduction(简介) Assumptions and Goals(假设和目标) Hardware ...

  6. Hadoop官方文档翻译——YARN Architecture(2.7.3)

    The fundamental idea of YARN is to split up the functionalities of resource management and job sched ...

  7. Flume官方文档翻译——Flume 1.7.0 User Guide (unreleased version)(二)

    Flume官方文档翻译--Flume 1.7.0 User Guide (unreleased version)(一) Logging raw data(记录原始数据) Logging the raw ...

  8. 100 open source Big Data architecture papers for data professionals

    zhuan :https://www.linkedin.com/pulse/100-open-source-big-data-architecture-papers-anil-madan Big Da ...

  9. Apache Samza - Reliable Stream Processing atop Apache Kafka and Hadoop YARN

    http://engineering.linkedin.com/data-streams/apache-samza-linkedins-real-time-stream-processing-fram ...

随机推荐

  1. 动态磁盘恢复为基本磁盘--DiskGenius

    近日在老电脑中安装了Win8.1,想不到使用起来比Win7还流畅. 周末,手贱,由于C盘只有10GB,为主分区,D盘有40GB,为扩展分区,想要将C.D两个分区合二为一,在Win8.1的磁盘管理器中, ...

  2. 【转】MySQL的安装与配置

    一.MySQL的安装 1.在线安装: 命令:sudo apt-get install mysql-server 在安装的过程中将提示为“root”用户设置密码,输入自己的密码即可,安装按成后已自动配置 ...

  3. vs工程链接出现error LNK2005...already defined

    今天使用vs2008编译工程无错误,链接过程,出现很多这样的错误: error LNK2005: "public: __thiscall std::basic_string<char, ...

  4. 普通树(有根树)C++

    对于普通树实现的细节包括 1 树结点的结构体 2 初始化及删除树结点(关注内存泄露) 3 递归先序遍历 4 通过关键值的查询操作,返回关键值的结点 5 凹入表实现 6 广义表实现 7 非递归先序遍历, ...

  5. Android版的疯狂猜图游戏源码完整版分享

    这个游戏源码是在安装教程网那么分享过来的,Android版的疯狂猜图游戏源码完整版分享,也是本人之前很早以前发的一款游戏源码的,大家如果想了解一下,可以看看吧,不说多了,上一个图先吧.   > ...

  6. Ueditor中增加迅雷下载支持

    在项目中有遇到需要在Ueditor中加一个链接,迅雷的开头是thunder 会被默认加上http://   最后的 结果就变成了http://thunder://xxxxx 导致用户点击失败: 其实在 ...

  7. c#中的枚举

    1.枚举概念:枚举是用户定义的整型类型,在声明一个枚举时,要指定该枚举的实例可以包含的一组可接受的值,还可以给值指定易于记忆的名称.如果在代码的某个地方,要试图把一个不可接受范围内的值赋予枚举的一个实 ...

  8. iis7伪静态

    http://jingyan.baidu.com/article/67508eb4ff92c69cca1ce49a.html

  9. ISBN

    问题描述 每一本正式出版的图书都有一个ISBN号码与之对应,ISBN码包括9位数字.1位识别码和3位分隔符,其规定格式如“x-xxx-xxxxx-x”,其中符号“-”是分隔符(键盘上的减号),最后一位 ...

  10. spot 5、ALOS监督分类波段组成

    spot 5监督分类RGB:412 ALOS分类波段RGB:432