寒假做的题了,先贴那时写的代码。

POJ 1061

#include<iostream>
#include<cstdio>
typedef long long LL;
using namespace std; void extend_gcd(LL a,LL b,LL &d,LL &x,LL &y)
{
if(b==0)
{
d=a;
x=1,y=0;
}
else
{
extend_gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
} int main()
{
LL x,y,m,n,L;
while(scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&L)!=EOF)
{
LL d,xx,yy;
extend_gcd(n-m,L,d,xx,yy);
if((x-y)%d==0)
{
LL p=L/d;
xx=(x-y)/d*xx;
xx=(xx%p+p)%p;
printf("%I64d\n",xx);
}
else printf("Impossible\n");
}
return 0;
}

POJ 2115

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<cstdlib>
#include<vector>
#include<stack>
#include<map>
using namespace std;
typedef long long ll; ll extend_gcd(ll a,ll b,ll &x,ll &y)
{ //return d=gcd(a,n);
if(b==0)
{
x=1,y=0;
return a;
}
else
{
ll t=extend_gcd(b,a%b,x,y);
ll xx=x,yy=y;
x=yy;
y=xx-(a/b)*yy;
return t;
}
} int main()
{
ll A,B,C,k,x,y;
while(~scanf("%I64d %I64d %I64d %I64d",&A,&B,&C,&k))
{
if(A==0&&B==0&&C==0&&k==0) break;
ll a=C,b=B-A,n=(ll)1<<k; //n=2^k
ll d=extend_gcd(a,n,x,y); if(b%d!=0) //方程无解
printf("FOREVER\n");
else
{
x=(x*(b/d))%n; //x为方程ax=b(mod n)的最小解
x=(x%(n/d)+n/d)%(n/d); //x为方程ax=b(mod n)的最小整数解
printf("%I64d\n",x);
}
}
return 0;
}

POJ 2891

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll; void extend_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(b==0)
{
d=a;
x=1,y=0;
}
else
{
extend_gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
} int main()
{
int k;
ll a1,r1,a,r;
while(~scanf("%d",&k))
{
scanf("%I64d%I64d",&a1,&r1);
int flag=1;
for(int i=2;i<=k;i++)
{
scanf("%I64d%I64d",&a,&r);
ll d,x,y;
extend_gcd(a1,a,d,x,y);
if((r-r1)%d!=0)
flag=0;
ll p=a/d;
x=(r-r1)/d*x;
x=(x%p+p)%p;
r1=a1*x+r1;
a1=a1*(a/d);
}
if(flag)
printf("%I64d\n",r1);
else printf("-1\n");
}
return 0;
}

数学#扩展欧几里德 POJ 1061&2115&2891的更多相关文章

  1. 扩展欧几里德 POJ 1061

    欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...

  2. poj 1061 青蛙约会(扩展欧几里德)

    题目链接: http://poj.org/problem?id=1061 题目大意: 中文题目,题意一目了然,就是数据范围大的出奇. 解题思路: 假设两只青蛙都跳了T次,可以列出来不定方程:p*l + ...

  3. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  4. POJ 1061 青蛙的约会(扩展欧几里德)

    点我看题目 题意 : 中文题不详述. 思路 : 设经过s步后两青蛙相遇,则必满足(x+m*s)-(y+n*s) = K*L(k = 0,1,2....) 变形得:(n-m)*s+K*L = x-y ; ...

  5. POJ 2891 扩展欧几里德

    这个题乍一看跟剩余定理似的,但是它不满足两两互素的条件,所以不能用剩余定理,也是给了一组同余方程,找出一个X满足这些方程,如果找不到的话就输出-1 因为它不满足互素的条件,所以两个两个的合并,最后合成 ...

  6. POJ 1061 青蛙的约会(扩展欧几里德算法)

    题意:两只青蛙在同一个纬度上跳跃,给定每个青蛙的开始坐标和每秒跳几个单位,纬度长为L,求它们相遇的最短时间. 析:开始,一看只有一组数据,就想模拟一下,觉得应该不会超时,但是不幸的是TLE了,我知道这 ...

  7. poj 2115 C Looooops 扩展欧几里德

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23616   Accepted: 6517 Descr ...

  8. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  9. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

随机推荐

  1. Redux超酷的开发工具Redux-Devtools

    超酷的开发工具 Redux-devtools redux-devtools是一个有趣而又高效的redux开发工具,如果你想直接在github上查看相关的内容,请前往这里.事实上,也鼓励大家养成在git ...

  2. 挖坑:CF712E

    #include<cstdio> #include<cstring> #include<algorithm> #define maxn 1000005 using ...

  3. 面试题-Java Web-网络通信

    1.HTTP响应的结构是怎么样的? HTTP响应由三个部分组成:状态码(Status Code):描述了响应的状态.可以用来检查是否成功的完成了请求.请求失败的情况下,状态码可用来找出失败的原因.如果 ...

  4. 使用ab对站点进行压力测试

    测试指令: window下: E:\wamp\bin\apache\Apache2.2.21\bin> .\ab -V  //查看是否按照了ab:(V 大写) E:\wamp\bin\apach ...

  5. PyCharm基本使用

    调节PyCharm的背景颜色 File>Settings>Appearance&Behavior>Appearance 在PyCharm中切换Python解释器版本 File ...

  6. Haskell Json数据处理

    json的基本类型为——string, numbers, Booleans以及null,定义json类型如下 -- file: Json.hs module Json where data JValu ...

  7. 避免VMware P2V 过程中遇到的磁盘问题及解决 版本5.5

    正式步骤开始:填写红色框内相关要被转换成虚拟机的物理机器的账号信息 选择虚拟主机要转换到的目的主机,填写相关的账号信息 设置转换参数:这里要注意一下关于磁盘的设置,注意:如果源系统是LVM的磁盘卷不将 ...

  8. Openjudge-NOI题库-Pell数列

    题目描述 Description Pell数列a1, a2, a3, ...的定义是这样的,a1 = 1, a2 = 2, ... , an = 2 * an − 1 + an - 2 (n > ...

  9. 使用SQL Server临时表来实现字符串合并处理

    处理的数据 CREATE TABLE tb(col1 varchar(10),col2 int) INSERT tb SELECT 'a',1 union ALL SELECT 'a',2 union ...

  10. linux下获取硬盘、内存、U盘大小及使用大小

    /* * 获取硬盘大小;内存大小;usb大小 */ #ifndef SYSINFOGET_H #define SYSINFOGET_H #include <stdio.h> //磁盘信息 ...