一个:介绍KMP算法之前,首先解释一下BF算法

(1)BF算法(传统的匹配算法,是最简单的算法)

BF算法是一种常见的模式匹配算法,BF该算法的思想是目标字符串S模式串的第一个字符P的第一个字符,以匹配,如果相等,然后去比较S第二个字和P;若不相等。则比較S的第二个字符和P的第一个字符。依次比較下去。直到得出最后的匹配结果。

   

(2)举例说明:

    S:  ababcababa

    P:  ababa

  BF算法匹配的过程例如以下

           i=0                  i=1                       i=2                 i=3                   i=4

  第一趟:ababcababa         第二趟:ababcababa      第三趟:ababcababa    第四趟:ababcababa    第五趟:ababcababa

    ababa                         ababa                 ababa                 ababa                   ababa

    j=0                           j=1                   j=2                   j=3                     j=4(i和j回溯)



    i=1                           i=2                   i=3                   i=4                     i=3 

 第六趟:ababcababa         第七趟:ababcababa       第八趟:ababcababa     第九趟:ababcababa   第十趟:ababcababa

    ababa                   ababa                        ababa               ababa                   ababa

    j=0                     j=0                          j=1                 j=2(i和j回溯)           j=0



    i=4                     i=5                          i=6                 i=7                     i=8

第十一趟:ababcababa       第十二趟:ababcababa    第十三趟:ababcababa   第十四趟:ababcababa   第十五趟:ababcababa

       ababa                    ababa               ababa                    ababa                ababa

       j=0                       j=0                j=1                      j=2                  j=3

 

    i=9

第十六趟:ababcababa

 ababa

 j=4(匹配成功)

事实上在上面的匹配过程中,有非常多比較是多余的。在第五趟匹配失败的时候,在第六趟。i能够保持不变。j值为2。由于在前面匹配的过程中,对于串S,已知s0s1s2s3=p0p1p2p3。又由于p0!=p1!。所以第六趟的匹配是多余的。又由于p0==p2,p1==p3,所以第七趟和第八趟的匹配也是多余的。

在KMP算法中就省略了这些多余的匹配。

(3)BF代码:

int BFMatch(char* ori,char *des)
{
int i,j;
i = 0;
while(*(ori+i)!='\0')
{
j = 0;
while(*(ori+i)!='\0'&&*(des+j)!='\0'&&*(ori+i)==*(des+j))
{
i++;
j++;
}
if(*(des+j)=='\0')
return i-j;// 返回匹配成功后的src中的開始下标
i = i-j+1;// 回溯到,这次匹配的src中的開始位置的下一个位置
}
return -1;
}

二:KMP算法

(1)KMP算法之所以叫做KMP算法是由于这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。

事实上KMP算法与BF算法的差别就在于KMP算法巧妙的

消除了指针i的回溯问题。仅仅需确定下次匹配j的位置就可以。使得问题的复杂度由O(mn)下降到O(m+n)。

在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于同样字符序列的前缀。

对于next[]数组的定义例如以下:

 1) next[j] = -1  j = 0

 2) next[j] = max(k): 0<k<j   P[0...k-1]=P[j-k,j-1]

 3) next[j] = 0  其它



 如:

 P      a    b   a    b   a

 j      0    1   2    3   4

 next    -1   0   0    1   2

 

即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]



因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,假设next[j]>=0,则目标串的指针i不变。将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比較。

(2)KMP算法通过next数组能够知道目标串中下一个字符是否有必要被检測,这个next数组就是用所谓的“前缀函数(一般数据结构书中的getNext函数)”来存储的。

这个函数可以反映出现失配情况时,系统应该跳过多少无用字符(也即模式串应该向右滑动多长距离)而进行下一次检測

一是这个前缀函数的求法。

二是在得到前缀函数之后。怎么运用这个函数所反映的有效信息避免不必要的检測。

  以下介绍《部分匹配表》是怎样产生的。

  首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的所有头部组合。"后缀"指除了第一个字符以外,一个字符串的所有尾部组合。

  "部分匹配值"就是"前缀"和"后缀"的最长的共同拥有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共同拥有元素的长度为0。

  - "AB"的前缀为[A],后缀为[B],共同拥有元素的长度为0;

  - "ABC"的前缀为[A, AB]。后缀为[BC, C]。共同拥有元素的长度0。

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共同拥有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A]。共同拥有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B]。共同拥有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共同拥有元素的长度为0。

(3) 代码例如以下:

#include <iostream>
#include <cstring> using namespace std;
const int MAX_SIZE = 64; void getNext(char *p,int next[])
{
int j,k;
next[0] = -1;
j = 0;
k = -1;
while(j<strlen(p))
{
if(k==-1 || p[j]==p[k])
{
j++;
k++;
next[j] = k;
}
else
k = next[k];
}
int i;
for(i=1;i<=j;i++)
cout << next[i] << ",";
} int KMPMatch(char *s,char *p)
{
int next[MAX_SIZE];
int i,j;
i = 0;
j = 0;
getNext(p,next);
while(s[i]!='\0')
{
if(j==-1 || s[i]==p[j])
{
i++;
j++;
}
else
{
j = next[j];// 消除指针回溯
}
if(p[j] == '\0')
return i-j;
}
return -1;
} int main()
{
char ori[MAX_SIZE],des[MAX_SIZE];
cout << "请输入两个字符串进行匹配:" << endl;
cin >> ori >> des;
//cout << "匹配结果:" << BFMatch(ori,des) << endl;
cout << "匹配结果:" << KMPMatch(ori,des) << endl;
return 0;
}

(4)总结:KMP是用来匹配test字符串是否是目标串的子串,相当于全然匹配。即測试字符串是否在目标字符串中出现过

三:最长公共子序列(LONGEST COMMEN SUBSEQUENCE)

(1)子序列:不要求连续的,子串是要求连续的。

(2)代码例如以下:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream> using namespace std;
const int MAX_SIZE = 100;
int LCSLength(char *s1,char *s2,const int &len1,const int &len2,int lcs[][MAX_SIZE],int b[][MAX_SIZE])
{
int i,j;
for(i=0;i<=len1;i++)
lcs[0][i] = 0;
for(j=1;j<=len2;j++)
lcs[j][0] = 0;
for(i=1;i<=len1;i++)
{
for(j=1;j<=len2;j++)
{
if(s1[i-1] == s2[j-1])
{
lcs[i][j] = lcs[i-1][j-1] + 1;
b[i][j] = 0;
}
else if(lcs[i-1][j] >= lcs[i][j-1])
{
lcs[i][j] = lcs[i-1][j];
b[i][j] = 1;
}
else
{
lcs[i][j] = lcs[i][j-1];
b[i][j] = -1;
}
}
}
return lcs[len1][len2];
} void PrintLCS(char *s1,int b[][MAX_SIZE],int i,int j)
{
if(i==1 || j==0)
return;// 一定要与返回啊啊
if(b[i][j] == 0)
{
PrintLCS(s1,b,i-1,j-1);
cout << s1[i-1];
}
else if(b[i][j] == 1)
{
PrintLCS(s1,b,i-1,j);
}
else
{
PrintLCS(s1,b,i,j-1);
}
}
int main()
{
int len1,len2;
int lcs[MAX_SIZE][MAX_SIZE],b[MAX_SIZE][MAX_SIZE];
char s1[MAX_SIZE],s2[MAX_SIZE];
int ans;
while(cin >> s1 >> s2)
{
len1 = strlen(s1);
len2 = strlen(s2);
ans = LCSLength(s1,s2,len1,len2,lcs,b);
cout << ans << endl;
PrintLCS(s1,b,len1,len2);
cout << endl;
}
return 0;
}//

版权声明:本文博客原创文章。博客,未经同意,不得转载。

KMP该算法解释(最长公共子)的更多相关文章

  1. 使用后缀数组寻找最长公共子字符串JavaScript版

    后缀数组很久很久以前就出现了,具体的概念读者自行搜索,小菜仅略知一二,不便讨论. 本文通过寻找两个字符串的最长公共子字符串,演示了后缀数组的经典应用. 首先需要说明,小菜实现的这个后缀数组算法,并非标 ...

  2. 算法练习——最长公共子序列的问题(LCS)

    问题描述: 对于两个序列X和Y的公共子序列中,长度最长的那个,定义为X和Y的最长公共子序列.X  Y   各自字符串有顺序,但是不一定需要相邻. 最长公共子串(Longest Common Subst ...

  3. Java实现 蓝桥杯VIP 算法提高 最长公共子序列

    算法提高 最长公共子序列 时间限制:1.0s 内存限制:256.0MB 问题描述 给定两个字符串,寻找这两个字串之间的最长公共子序列. 输入格式 输入两行,分别包含一个字符串,仅含有小写字母. 输出格 ...

  4. uva 10066 The Twin Towers (最长公共子)

    uva 10066 The Twin Towers 标题效果:最长公共子. 解题思路:最长公共子. #include<stdio.h> #include<string.h> # ...

  5. ACM/ICPC 之 最长公共子序列计数及其回溯算法(51Nod-1006(最长公共子序列))

    这道题被51Nod定为基础题(这要求有点高啊),我感觉应该可以算作一级或者二级题目,主要原因不是动态规划的状态转移方程的问题,而是需要理解最后的回溯算法. 题目大意:找到两个字符串中最长的子序列,子序 ...

  6. 【算法】最长公共子序列(nlogn)

    转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...

  7. POJ 2774 后缀数组:查找最长公共子

    思考:其实很easy.就在两个串在一起.通过一个特殊字符,中间分隔,然后找到后缀数组的最长的公共前缀.然后在两个不同的串,最长是最长的公共子串. 注意的是:用第一个字符串来推断是不是在同一个字符中,刚 ...

  8. 算法实践--最长公共子序列(Longest Common Subsquence)

    什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长 ...

  9. Java算法练习——最长公共前缀

    题目链接 题目描述 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 说明: 所有输入只包含小写字母 a-z . 示例 1 输入: [&qu ...

随机推荐

  1. android com.handmark.pulltorefresh 使用技巧

    近期使用android com.handmark.pulltorefresh 遇到一些小问题.如今总结一些: 集体使用教程见: http://blog.csdn.net/harvic880925/ar ...

  2. NET Core控制反转(IoC)

    ASP.NET Core中的依赖注入(1):控制反转(IoC)   ASP.NET Core在启动以及后续针对每个请求的处理过程中的各个环节都需要相应的组件提供相应的服务,为了方便对这些组件进行定制, ...

  3. 数据一致性(consistency)、服务可用性(availability)、分区容错性(partition-tolerance)

    数据一致性(consistency).服务可用性(availability).分区容错性(partition-tolerance) 分布式系统理论基础 - CAP 2016-04-04 18:27 b ...

  4. cocos2d-x 音乐/音效设置

    cocos2d-x 游戏中声音 有两种 一种是背景音乐一种是音效 载入音乐 或者音效的时候 我们须要先缓存声音 #include "SimpleAudioEngine.h" usi ...

  5. 【ArcGIS 10.2新特性】ArcGIS 10.2 for Desktop 新特性(一)

    ArcGIS 10.2 for Desktop是在10.1的成功基础上进行的改进,它的改进包括:性能提升.附加的安全性.40多个新的分析工具.3D功能提高.栅格增强.新的地理数据管理能力以及其它更多的 ...

  6. 基于三星ARM9(S3C2410)的交通违章抓拍系统的开发

    ARM9的交通违章抓拍系统的开发   ARM9的交通违章抓拍系统的开发 智能交通系统(ITS)将先进的信息技术.数据通讯传输技术.电子控制技术.计算机处理技术等应用于交通运输行业,从而实现各种运输方式 ...

  7. 线段树(单点更新and成段更新)

    线段树需要的空间. 区间为1-->n 假设是一棵完全二叉树,且树高为i. 完全二叉树性质:第i层最多有2^(i-1)个结点. 那么 2^(i-1) = n;     i = log2(n)  + ...

  8. github源码开源区块链浏览器

    <ignore_js_op> 帅爆了吧 https://blockexplorer.com/ github源码:https://github.com/bitcoin-blockexplor ...

  9. SQL之性能优化

     在实际应用中.数据库中的数据会有非常多.若要从这些数据表中检索数据,就须要对系统进行优化,提高数据库系统的响应速度,以下就是日常一些查询优化的方法. 1.创建索引 索引能够提高数据库查询的速度, ...

  10. Hdu 5256 系列转换

    主题链接: HDU5236 代码: #include<iostream> #include<cstdio> #include<cstring> #include&l ...