开源Math.NET基础数学类库使用(09)相关数论函数使用
原文:【原创】开源Math.NET基础数学类库使用(09)相关数论函数使用
本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html
开源Math.NET基础数学类库使用总目录:http://www.cnblogs.com/asxinyu/p/4329737.html
前言
数论就是指研究整数性质的一门理论。数论=算术。不过通常算术指数的计算,数论指数的理论。整数的基本元素是素数,所以数论的本质是对素数性质的研究。它是与平面几何同样历史悠久的学科。它大致包括代数数论、解析数论、计算数论等等。
Math.NET也包括了很多数论相关的函数,这些函数都是静态的,可以直接调用,如判断是否奇数,判断幂,平方数,最大公约数等等。同时部分函数已经作为扩展方法,可以直接在对象中使用。
如果本文资源或者显示有问题,请参考 本文原文地址:http://www.cnblogs.com/asxinyu/p/4301097.html
1.数论函数类Euclid
Math.NET包括的数论函数除了一部分大家日常接触到的,奇数,偶数,幂,平方数,最大公约数,最小公倍数等函数,还有一些欧几里得几何的函数,当然也是比较简单的,这些问题的算法有一些比较简单,如最大公约数,最小公倍数等,都有成熟的算法可以使用,对于使用Math.NET的人来说,不必要了解太小,当然对于需要搞清楚原理的人来说,学习Math.NET的架构或者实现,是可以参考的。所以这里先给出Math.NET关于数论函数类Euclid的源代码:
/// <summary>
/// 整数数论函数
/// Integer number theory functions.
/// </summary>
public static class Euclid
{
/// <summary>
/// Canonical Modulus. The result has the sign of the divisor.
/// </summary>
public static double Modulus(double dividend, double divisor)
{
return ((dividend%divisor) + divisor)%divisor;
} /// <summary>
/// Canonical Modulus. The result has the sign of the divisor.
/// </summary>
public static float Modulus(float dividend, float divisor)
{
return ((dividend%divisor) + divisor)%divisor;
} /// <summary>
/// Canonical Modulus. The result has the sign of the divisor.
/// </summary>
public static int Modulus(int dividend, int divisor)
{
return ((dividend%divisor) + divisor)%divisor;
} /// <summary>
/// Canonical Modulus. The result has the sign of the divisor.
/// </summary>
public static long Modulus(long dividend, long divisor)
{
return ((dividend%divisor) + divisor)%divisor;
} #if !NOSYSNUMERICS
/// <summary>
/// Canonical Modulus. The result has the sign of the divisor.
/// </summary>
public static BigInteger Modulus(BigInteger dividend, BigInteger divisor)
{
return ((dividend%divisor) + divisor)%divisor;
}
#endif /// <summary>
/// Remainder (% operator). The result has the sign of the dividend.
/// </summary>
public static double Remainder(double dividend, double divisor)
{
return dividend%divisor;
} /// <summary>
/// Remainder (% operator). The result has the sign of the dividend.
/// </summary>
public static float Remainder(float dividend, float divisor)
{
return dividend%divisor;
} /// <summary>
/// Remainder (% operator). The result has the sign of the dividend.
/// </summary>
public static int Remainder(int dividend, int divisor)
{
return dividend%divisor;
} /// <summary>
/// Remainder (% operator). The result has the sign of the dividend.
/// </summary>
public static long Remainder(long dividend, long divisor)
{
return dividend%divisor;
} #if !NOSYSNUMERICS
/// <summary>
/// Remainder (% operator). The result has the sign of the dividend.
/// </summary>
public static BigInteger Remainder(BigInteger dividend, BigInteger divisor)
{
return dividend%divisor;
}
#endif /// <summary>
/// Find out whether the provided 32 bit integer is an even number.
/// </summary>
/// <param name="number">The number to very whether it's even.</param>
/// <returns>True if and only if it is an even number.</returns>
public static bool IsEven(this int number)
{
return (number & 0x1) == 0x0;
} /// <summary>
/// Find out whether the provided 64 bit integer is an even number.
/// </summary>
/// <param name="number">The number to very whether it's even.</param>
/// <returns>True if and only if it is an even number.</returns>
public static bool IsEven(this long number)
{
return (number & 0x1) == 0x0;
} /// <summary>
/// Find out whether the provided 32 bit integer is an odd number.
/// </summary>
/// <param name="number">The number to very whether it's odd.</param>
/// <returns>True if and only if it is an odd number.</returns>
public static bool IsOdd(this int number)
{
return (number & 0x1) == 0x1;
} /// <summary>
/// Find out whether the provided 64 bit integer is an odd number.
/// </summary>
/// <param name="number">The number to very whether it's odd.</param>
/// <returns>True if and only if it is an odd number.</returns>
public static bool IsOdd(this long number)
{
return (number & 0x1) == 0x1;
} /// <summary>
/// Find out whether the provided 32 bit integer is a perfect power of two.
/// </summary>
/// <param name="number">The number to very whether it's a power of two.</param>
/// <returns>True if and only if it is a power of two.</returns>
public static bool IsPowerOfTwo(this int number)
{
return number > && (number & (number - )) == 0x0;
} /// <summary>
/// Find out whether the provided 64 bit integer is a perfect power of two.
/// </summary>
/// <param name="number">The number to very whether it's a power of two.</param>
/// <returns>True if and only if it is a power of two.</returns>
public static bool IsPowerOfTwo(this long number)
{
return number > && (number & (number - )) == 0x0;
} /// <summary>
/// Find out whether the provided 32 bit integer is a perfect square, i.e. a square of an integer.
/// </summary>
/// <param name="number">The number to very whether it's a perfect square.</param>
/// <returns>True if and only if it is a perfect square.</returns>
public static bool IsPerfectSquare(this int number)
{
if (number < )
{
return false;
} int lastHexDigit = number & 0xF;
if (lastHexDigit > )
{
return false; // return immediately in 6 cases out of 16.
} if (lastHexDigit == || lastHexDigit == || lastHexDigit == || lastHexDigit == )
{
int t = (int)Math.Floor(Math.Sqrt(number) + 0.5);
return (t * t) == number;
} return false;
} /// <summary>
/// Find out whether the provided 64 bit integer is a perfect square, i.e. a square of an integer.
/// </summary>
/// <param name="number">The number to very whether it's a perfect square.</param>
/// <returns>True if and only if it is a perfect square.</returns>
public static bool IsPerfectSquare(this long number)
{
if (number < )
{
return false;
} int lastHexDigit = (int)(number & 0xF);
if (lastHexDigit > )
{
return false; // return immediately in 6 cases out of 16.
} if (lastHexDigit == || lastHexDigit == || lastHexDigit == || lastHexDigit == )
{
long t = (long)Math.Floor(Math.Sqrt(number) + 0.5);
return (t * t) == number;
} return false;
} /// <summary>
/// Raises 2 to the provided integer exponent (0 <= exponent < 31).
/// </summary>
/// <param name="exponent">The exponent to raise 2 up to.</param>
/// <returns>2 ^ exponent.</returns>
/// <exception cref="ArgumentOutOfRangeException"/>
public static int PowerOfTwo(this int exponent)
{
if (exponent < || exponent >= )
{
throw new ArgumentOutOfRangeException("exponent");
} return << exponent;
} /// <summary>
/// Raises 2 to the provided integer exponent (0 <= exponent < 63).
/// </summary>
/// <param name="exponent">The exponent to raise 2 up to.</param>
/// <returns>2 ^ exponent.</returns>
/// <exception cref="ArgumentOutOfRangeException"/>
public static long PowerOfTwo(this long exponent)
{
if (exponent < || exponent >= )
{
throw new ArgumentOutOfRangeException("exponent");
} return ((long)) << (int)exponent;
} /// <summary>
/// Find the closest perfect power of two that is larger or equal to the provided
/// 32 bit integer.
/// </summary>
/// <param name="number">The number of which to find the closest upper power of two.</param>
/// <returns>A power of two.</returns>
/// <exception cref="ArgumentOutOfRangeException"/>
public static int CeilingToPowerOfTwo(this int number)
{
if (number == Int32.MinValue)
{
return ;
} const int maxPowerOfTwo = 0x40000000;
if (number > maxPowerOfTwo)
{
throw new ArgumentOutOfRangeException("number");
} number--;
number |= number >> ;
number |= number >> ;
number |= number >> ;
number |= number >> ;
number |= number >> ;
return number + ;
} /// <summary>
/// Find the closest perfect power of two that is larger or equal to the provided
/// 64 bit integer.
/// </summary>
/// <param name="number">The number of which to find the closest upper power of two.</param>
/// <returns>A power of two.</returns>
/// <exception cref="ArgumentOutOfRangeException"/>
public static long CeilingToPowerOfTwo(this long number)
{
if (number == Int64.MinValue)
{
return ;
} const long maxPowerOfTwo = 0x4000000000000000;
if (number > maxPowerOfTwo)
{
throw new ArgumentOutOfRangeException("number");
} number--;
number |= number >> ;
number |= number >> ;
number |= number >> ;
number |= number >> ;
number |= number >> ;
number |= number >> ;
return number + ;
} /// <summary>
/// Returns the greatest common divisor (<c>gcd</c>) of two integers using Euclid's algorithm.
/// </summary>
/// <param name="a">First Integer: a.</param>
/// <param name="b">Second Integer: b.</param>
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
public static long GreatestCommonDivisor(long a, long b)
{
while (b != )
{
var remainder = a%b;
a = b;
b = remainder;
} return Math.Abs(a);
} /// <summary>
/// Returns the greatest common divisor (<c>gcd</c>) of a set of integers using Euclid's
/// algorithm.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
public static long GreatestCommonDivisor(IList<long> integers)
{
if (null == integers)
{
throw new ArgumentNullException("integers");
} if (integers.Count == )
{
return ;
} var gcd = Math.Abs(integers[]); for (var i = ; (i < integers.Count) && (gcd > ); i++)
{
gcd = GreatestCommonDivisor(gcd, integers[i]);
} return gcd;
} /// <summary>
/// Returns the greatest common divisor (<c>gcd</c>) of a set of integers using Euclid's algorithm.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
public static long GreatestCommonDivisor(params long[] integers)
{
return GreatestCommonDivisor((IList<long>)integers);
} /// <summary>
/// Computes the extended greatest common divisor, such that a*x + b*y = <c>gcd</c>(a,b).
/// </summary>
/// <param name="a">First Integer: a.</param>
/// <param name="b">Second Integer: b.</param>
/// <param name="x">Resulting x, such that a*x + b*y = <c>gcd</c>(a,b).</param>
/// <param name="y">Resulting y, such that a*x + b*y = <c>gcd</c>(a,b)</param>
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
/// <example>
/// <code>
/// long x,y,d;
/// d = Fn.GreatestCommonDivisor(45,18,out x, out y);
/// -> d == 9 && x == 1 && y == -2
/// </code>
/// The <c>gcd</c> of 45 and 18 is 9: 18 = 2*9, 45 = 5*9. 9 = 1*45 -2*18, therefore x=1 and y=-2.
/// </example>
public static long ExtendedGreatestCommonDivisor(long a, long b, out long x, out long y)
{
long mp = , np = , m = , n = ; while (b != )
{
long rem;
#if PORTABLE
rem = a % b;
var quot = a / b;
#else
long quot = Math.DivRem(a, b, out rem);
#endif
a = b;
b = rem; var tmp = m;
m = mp - (quot*m);
mp = tmp; tmp = n;
n = np - (quot*n);
np = tmp;
} if (a >= )
{
x = mp;
y = np;
return a;
} x = -mp;
y = -np;
return -a;
} /// <summary>
/// Returns the least common multiple (<c>lcm</c>) of two integers using Euclid's algorithm.
/// </summary>
/// <param name="a">First Integer: a.</param>
/// <param name="b">Second Integer: b.</param>
/// <returns>Least common multiple <c>lcm</c>(a,b)</returns>
public static long LeastCommonMultiple(long a, long b)
{
if ((a == ) || (b == ))
{
return ;
} return Math.Abs((a/GreatestCommonDivisor(a, b))*b);
} /// <summary>
/// Returns the least common multiple (<c>lcm</c>) of a set of integers using Euclid's algorithm.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
public static long LeastCommonMultiple(IList<long> integers)
{
if (null == integers)
{
throw new ArgumentNullException("integers");
} if (integers.Count == )
{
return ;
} var lcm = Math.Abs(integers[]); for (var i = ; i < integers.Count; i++)
{
lcm = LeastCommonMultiple(lcm, integers[i]);
} return lcm;
} /// <summary>
/// Returns the least common multiple (<c>lcm</c>) of a set of integers using Euclid's algorithm.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
public static long LeastCommonMultiple(params long[] integers)
{
return LeastCommonMultiple((IList<long>)integers);
} #if !NOSYSNUMERICS
/// <summary>
/// Returns the greatest common divisor (<c>gcd</c>) of two big integers.
/// </summary>
/// <param name="a">First Integer: a.</param>
/// <param name="b">Second Integer: b.</param>
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
public static BigInteger GreatestCommonDivisor(BigInteger a, BigInteger b)
{
return BigInteger.GreatestCommonDivisor(a, b);
} /// <summary>
/// Returns the greatest common divisor (<c>gcd</c>) of a set of big integers.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
public static BigInteger GreatestCommonDivisor(IList<BigInteger> integers)
{
if (null == integers)
{
throw new ArgumentNullException("integers");
} if (integers.Count == )
{
return ;
} var gcd = BigInteger.Abs(integers[]); for (int i = ; (i < integers.Count) && (gcd > BigInteger.One); i++)
{
gcd = GreatestCommonDivisor(gcd, integers[i]);
} return gcd;
} /// <summary>
/// Returns the greatest common divisor (<c>gcd</c>) of a set of big integers.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
public static BigInteger GreatestCommonDivisor(params BigInteger[] integers)
{
return GreatestCommonDivisor((IList<BigInteger>)integers);
} /// <summary>
/// Computes the extended greatest common divisor, such that a*x + b*y = <c>gcd</c>(a,b).
/// </summary>
/// <param name="a">First Integer: a.</param>
/// <param name="b">Second Integer: b.</param>
/// <param name="x">Resulting x, such that a*x + b*y = <c>gcd</c>(a,b).</param>
/// <param name="y">Resulting y, such that a*x + b*y = <c>gcd</c>(a,b)</param>
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
/// <example>
/// <code>
/// long x,y,d;
/// d = Fn.GreatestCommonDivisor(45,18,out x, out y);
/// -> d == 9 && x == 1 && y == -2
/// </code>
/// The <c>gcd</c> of 45 and 18 is 9: 18 = 2*9, 45 = 5*9. 9 = 1*45 -2*18, therefore x=1 and y=-2.
/// </example>
public static BigInteger ExtendedGreatestCommonDivisor(BigInteger a, BigInteger b, out BigInteger x, out BigInteger y)
{
BigInteger mp = BigInteger.One, np = BigInteger.Zero, m = BigInteger.Zero, n = BigInteger.One; while (!b.IsZero)
{
BigInteger rem;
BigInteger quot = BigInteger.DivRem(a, b, out rem);
a = b;
b = rem; BigInteger tmp = m;
m = mp - (quot*m);
mp = tmp; tmp = n;
n = np - (quot*n);
np = tmp;
} if (a >= BigInteger.Zero)
{
x = mp;
y = np;
return a;
} x = -mp;
y = -np;
return -a;
} /// <summary>
/// Returns the least common multiple (<c>lcm</c>) of two big integers.
/// </summary>
/// <param name="a">First Integer: a.</param>
/// <param name="b">Second Integer: b.</param>
/// <returns>Least common multiple <c>lcm</c>(a,b)</returns>
public static BigInteger LeastCommonMultiple(BigInteger a, BigInteger b)
{
if (a.IsZero || b.IsZero)
{
return BigInteger.Zero;
} return BigInteger.Abs((a/BigInteger.GreatestCommonDivisor(a, b))*b);
} /// <summary>
/// Returns the least common multiple (<c>lcm</c>) of a set of big integers.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
public static BigInteger LeastCommonMultiple(IList<BigInteger> integers)
{
if (null == integers)
{
throw new ArgumentNullException("integers");
} if (integers.Count == )
{
return ;
} var lcm = BigInteger.Abs(integers[]); for (int i = ; i < integers.Count; i++)
{
lcm = LeastCommonMultiple(lcm, integers[i]);
} return lcm;
} /// <summary>
/// Returns the least common multiple (<c>lcm</c>) of a set of big integers.
/// </summary>
/// <param name="integers">List of Integers.</param>
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
public static BigInteger LeastCommonMultiple(params BigInteger[] integers)
{
return LeastCommonMultiple((IList<BigInteger>)integers);
}
#endif
}
2.Euclid类的使用例子
上面已经看到源码,也提到了,Euclid作为静态类,其中的很多静态方法都可以直接作为扩展方法使用。这里看看几个简单的例子:
// 1. Find out whether the provided number is an even number
Console.WriteLine(@"1.判断提供的数字是否是偶数");
Console.WriteLine(@"{0} 是偶数 = {1}. {2} 是偶数 = {3}", , Euclid.IsEven(), , .IsEven());
Console.WriteLine(); // 2. Find out whether the provided number is an odd number
Console.WriteLine(@"2.判断提供的数字是否是奇数");
Console.WriteLine(@"{0} 是奇数 = {1}. {2} 是奇数 = {3}", , .IsOdd(), , Euclid.IsOdd());
Console.WriteLine(); // 3. Find out whether the provided number is a perfect power of two
Console.WriteLine(@"2.判断提供的数字是否是2的幂");
Console.WriteLine(@"{0} 是2的幂 = {1}. {2} 是2的幂 = {3}", , .IsPowerOfTwo(), , Euclid.IsPowerOfTwo());
Console.WriteLine(); // 4. Find the closest perfect power of two that is larger or equal to 97
Console.WriteLine(@"4.返回大于等于97的最小2的幂整数");
Console.WriteLine(.CeilingToPowerOfTwo());
Console.WriteLine(); // 5. Raise 2 to the 16
Console.WriteLine(@"5. 2的16次幂");
Console.WriteLine(.PowerOfTwo());
Console.WriteLine(); // 6. Find out whether the number is a perfect square
Console.WriteLine(@"6. 判断提供的数字是否是平方数");
Console.WriteLine(@"{0} 是平方数 = {1}. {2} 是平方数 = {3}", , .IsPerfectSquare(), , Euclid.IsPerfectSquare());
Console.WriteLine(); // 7. Compute the greatest common divisor of 32 and 36
Console.WriteLine(@"7. 返回32和36的最大公约数");
Console.WriteLine(Euclid.GreatestCommonDivisor(, ));
Console.WriteLine(); // 8. Compute the greatest common divisor of 492, -984, 123, 246
Console.WriteLine(@"8. 返回的最大公约数:492、-984、123、246");
Console.WriteLine(Euclid.GreatestCommonDivisor(, -, , ));
Console.WriteLine(); // 9. Compute the least common multiple of 16 and 12
Console.WriteLine(@"10. 计算的最小公倍数:16和12");
Console.WriteLine(Euclid.LeastCommonMultiple(, ));
Console.WriteLine();
结果如下:
.判断提供的数字是否是偶数
是偶数 = False. 是偶数 = True .判断提供的数字是否是奇数
是奇数 = True. 是奇数 = False .判断提供的数字是否是2的幂
是2的幂 = False. 是2的幂 = True .返回大于等于97的最小2的幂整数 . 2的16次幂 . 判断提供的数字是否是平方数
是平方数 = False. 是平方数 = True . 返回32和36的最大公约数 . 返回的最大公约数:、-、、 . 计算的最小公倍数:16和12
3.资源
源码下载:http://www.cnblogs.com/asxinyu/p/4264638.html
如果本文资源或者显示有问题,请参考 本文原文地址:http://www.cnblogs.com/asxinyu/p/4301097.html
开源Math.NET基础数学类库使用(09)相关数论函数使用的更多相关文章
- 【原创】开源Math.NET基础数学类库使用(09)相关数论函数使用
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【目录】开源Math.NET基础数学类库使用总目录
本博客所有文章分类的总目录链接:[总目录]本博客博文总目录-实时更新 1.开源Math.NET数学组件文章 1.开源Math.NET基础数学类库使用(01)综合介绍 2.开源Math.NET ...
- 【原创】开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(16)C#计算矩阵秩
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月 ...
- 【原创】开源Math.NET基础数学类库使用(17)C#计算矩阵条件数
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月 ...
- 开源Math.NET基础数学类库使用(17)C#计算矩阵条件数
原文:[原创]开源Math.NET基础数学类库使用(17)C#计算矩阵条件数 本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p ...
- 开源Math.NET基础数学类库使用(16)C#计算矩阵秩
原文:[原创]开源Math.NET基础数学类库使用(16)C#计算矩阵秩 本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4 ...
- 开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式
原文:[原创]开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式 开源Math.NET基础数学类库使用系列文章总目录: 1.开源.NET基础数学计算组件Math.NET( ...
- 【原创】开源Math.NET基础数学类库使用(01)综合介绍
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
随机推荐
- SpringMVC与Mybatis框架整合遇到的坑(转)
最近在做springmvc与mybatis的项目,遇到一些比较坑的问题.花了许多时间却发现其实解决的办法很简单.这里主要是讲我自己在整合这两个框架的时候遇到的一些问题做一个整理.希望遇到和我同样问题的 ...
- hdu3664(递推dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3664 分析:dp[i][j]表示i个数的排列中E值为j的个数.假设现在已有一个E值为j的i的排列,对于 ...
- Android数据库hibernate框架
说明 /** * YDL_Hibernate总结 <br/> * (一)支持功能: 1.自己主动建表,支持属性来自继承类:可依据注解自己主动完毕建表,而且对于继承类中的注解字段也支持自己主 ...
- extern int *a与extern int a[]
extern int *a与int a[] Table of Contents 1. 问题: 2. 解答: 1 问题: 以下的声明取自某个源文件: int a[10]; int *b=a; 但在还有一 ...
- AJAX基础知识点学�
1.AJAX(Asynchronous JavaScript and XML)即,异步JavaScript和XML 2.同步/异步差别 同步: ①每次进行整个页面的刷新 ②同步的链接在同一时间仅仅能有 ...
- Json与Java对象互转之Gson学习
Json与Java对象互转之Gson学习 请尊重他人的劳动成果.转载请注明出处:Json与Java对象互转之Gson学习 我曾在<XML,Object,Json转换之浅析Xstr ...
- Mac OS X在建筑Python科学计算环境
经验(比如这篇日志:http://blog.csdn.net/waleking/article/details/7578517).他们推荐使用Mac Ports这种软件来管理和安装全部的安装包.依照这 ...
- VMware vSphere 服务器虚拟化之二十六 桌面虚拟化之View Persona Management
VMware vSphere 服务器虚拟化之二十六 桌面虚拟化之View Persona Management 实验失败告终,启动VMware View Persona Management服务报10 ...
- hdu 4857 逃生 拓扑排序+PQ,剥层分析
pid=4857">hdu4857 逃生 题目是求拓扑排序,但不是依照字典序最小输出,而是要使较小的数排在最前面. 一開始的错误思路:给每一个点确定一个优先级(该点所能到达的最小的点) ...
- python学习笔记之七:魔法方法,属性
在python中,有的名称会在前面和后面加上两个下划线,由这些名字组成的集合所包含的方法称为魔法方法(或者是特殊方法).如果对象实现了这些方法中的某一个,那么这个方法会在特殊的情况下(确切地说是根据名 ...