题意:选出最小路径覆盖图中所有点,路径可以交叉,也就是允许路径有重复的点。

  分析:这个题的难点在于如何解决有重复点的问题~方法就是使用Floyd求闭包,就是把间接相连的点直接连上边,然后就是求最小路径覆盖了。我来大概解释一下为什么是对的,首先我们要明确,当我们重复利用一个点的时候,一定是有两个比较良好的路径相交了,而二分图是不允许这样的情况存在的,因为那必然存在了一个点有一个以上的出度或者入度了,而怎么避免这个问题呢,看下面的图:

  这就是针对这个问题的一个典型的模型,如果使用正常二分图,求得的匹配值为2,路径数为3(例如:2-3-5,1,4),但是如果我们把3用两次,那么求得的答案就是2了(例如:2-3-5,1-3-4).

so,我们的解决办法就出来了,当(2-3-5)这个路径被选择的时候,我们在(1-3-4)这个路径时只要把3无视掉,直接在1-4之间建一条边就可以了,那样1-4就匹配成功了。这样所有含有交叉点的路径,都可以先选择一个路径,然后直接跨过交叉点连接一个,它所代表的仍然是经过交叉点的路径。

  有人也许会问,Floyd会压缩所有的边,会不会导致错误呢? 不会,比如这个图(1-4)和(1-5)都有边,在匹配中二分图是最大匹配,他会优先获得较多的匹配,最后无法找到增广路,才会考虑我们连接的边,不要因为边都被压缩了有一种答案会变小的错误。代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 510
int maps[maxn][maxn],vis[maxn],link[maxn];
int n,m;
void floyd()
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
if(!maps[i][j])
{
for(int k = ; k <= n; k++)
{
if(maps[i][k] && maps[k][j])
{
maps[i][j] = ;
break;
}
}
}
}
}
}
bool dfs(int u)
{
for(int i = ; i <= n; i++)
{
if(maps[u][i] && !vis[i])
{
vis[i] = ;
if(link[i] == - || dfs(link[i]))
{
link[i] = u;
return true;
}
}
}
return false;
}
int slove()
{
int ans = ;
memset(link,-,sizeof(link));
for(int i = ; i <= n; i++)
{
memset(vis,,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
int main()
{
int x,y;
while(~scanf("%d%d",&n,&m))
{
if(!n && !m) break;
memset(maps,,sizeof(maps));
while(m--)
{
scanf("%d%d",&x,&y);
maps[x][y] = ;
}
floyd();
printf("%d\n",n-slove());
}
return ;
}

poj 2594 Treasure Exploration(最小路径覆盖,可重点)的更多相关文章

  1. poj 2594 Treasure Exploration(最小路径覆盖+闭包传递)

    http://poj.org/problem?id=2594 Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total ...

  2. Poj 2594 Treasure Exploration (最小边覆盖+传递闭包)

    题目链接: Poj 2594 Treasure Exploration 题目描述: 在外星上有n个点需要机器人去探险,有m条单向路径.问至少需要几个机器人才能遍历完所有的点,一个点可以被多个机器人经过 ...

  3. POJ 2594 传递闭包的最小路径覆盖

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 7171   Accepted: 2 ...

  4. POJ 2594 (传递闭包 + 最小路径覆盖)

    题目链接: POJ 2594 题目大意:给你 1~N 个点, M 条有向边.问你最少需要多少个机器人,让它们走完所有节点,不同的机器人可以走过同样的一条路,图保证为 DAG. 很明显是 最小可相交路径 ...

  5. POJ 2594 Treasure Exploration(最小路径覆盖变形)

    POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要 ...

  6. POJ 2594 —— Treasure Exploration——————【最小路径覆盖、可重点、floyd传递闭包】

    Treasure Exploration Time Limit:6000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64 ...

  7. POJ 2594 Treasure Exploration (可相交最小路径覆盖)

    题意 给你张无环有向图,问至少多少条路径能够覆盖该图的所有顶点--并且,这些路径可以有交叉. 思路 不是裸的最小路径覆盖,正常的最小路径覆盖中两个人走的路径不能有重复的点,而本题可以重复. 当然我们仍 ...

  8. POJ 2594 Treasure Exploration(带交叉路的最小路径覆盖)

    题意:  派机器人去火星寻宝,给出一个无环的有向图,机器人可以降落在任何一个点上,再沿着路去其他点探索,我们的任务是计算至少派多少机器人就可以访问到所有的点.有的点可以重复去. 输入数据: 首先是n和 ...

  9. POJ 2594 Treasure Exploration (Floyd+最小路径覆盖)

    <题目链接> 题目大意: 机器人探索宝藏,有N个点,M条边.问你要几个机器人才能遍历所有的点. 解题分析: 刚开始还以为是最小路径覆盖的模板题,但是后面才知道,本题允许一个点经过多次,这与 ...

随机推荐

  1. From windows live writer

    天线数据长度: 4*14*9664*4 = 2164736 信道估计长度: 614400 均衡: 12*1200*4 = 57600

  2. NOIP2010-普及组复赛-第四题-三国游戏

    题目描述 Description 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏.  在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有 N 位武将(N为偶数且不 ...

  3. Openjudge-计算概论(A)-求出e的值

    描述: 利用公式e = 1 + 1/1! + 1/2! + 1/3! + ... + 1/n! 求e .输入输入只有一行,该行包含一个整数n(2<=n<=15),表示计算e时累加到1/n! ...

  4. Openjudge-计算概论(A)-计算书费

    描述: 下面是一个图书的单价表:计算概论 28.9 元/本数据结构与算法 32.7 元/本数字逻辑 45.6元/本C++程序设计教程 78 元/本人工智能 35 元/本计算机体系结构 86.2 元/本 ...

  5. hudson

    来源: hudson入门与实战 http://www.360doc.com/content/15/0304/22/12144668_452603921.shtml Hudson安装配置.部署应用及分析 ...

  6. java 文件的基本操作

    1 /** * java 文件操作 * 2016/5/10 **/ package cn.Java_7; import java.io.*; import java.util.Scanner; imp ...

  7. unity Mesh(网格)的使用

    创建两个三角形合成的矩形网格: GameObject obj= new GameObject(); MeshRenderer meshRenderer=obj.AddComponent<Mesh ...

  8. wmts调用路径手工合成

    wmts调用路径手工合成 一般OGC WMTS地图只提供了xml描述,地图应用常常要合成WMTS完整的调用URL.我们需要获知以下参数: BaseURL:例如 "http://10.36.5 ...

  9. Java中精确的数字计算类BigDecimal

    在日常开放当中需要我们计算数字,利率.通常Java的做法是使用Math相关的API.但是,这样做是不够精确的,由于float和double不能进行计算,如果强行进行计算会使得计算不准确.造成难以挽回的 ...

  10. VBS实现批量重命名文件并且操作前备份原有文件

    '=========================================================================='' VBScript Source File - ...