综述:

  本文将 CNN 与 FM(Factorization Machine) 结合,基于评论文本来进行评分预测。

简介:

目前将神经网络应用推荐系统的研究工作中,有一类思路是把如CNN等神经网络作为特征提取器,从图片、文本等辅助信息中提取特征向量,

’再融合到传统的如BPR, PMF等基于矩阵分解的推荐系统模型中来提升推荐性能。

  相较于ConvMF使用物品的文本描述信息来约束物品对应的隐向量,本文构建了两个并行的CNN模型,一个以用户发表的评论文本作为输入,

提取用户的行为特征;另一个以商品收到的评论文本作为输入,学习商品的特性。

  在两个CNN模型的输出层之上有一个共享层,使用FM来建模用户的特征与商品的特征之间的关联关系,从而将用户向量和商品向量映射到相同

的特征空间。这就是模型名称中Cooperative一词的由来,同时对用户特征和商品特征进行提取,再通过因子分解机来预测用户对商品的评分值。

详细:

  • Word Representation

user review text 是把每个用户所有的评论 拼接起来,这样用户就对应1篇文档,这篇文档由这个用户的多个评论组成。

  • CNN - layer

传统卷积层,把一篇文档输入后,最后得到这个用户的向量表达。同理,可以得到每个商品的向量表达。

  • FM层

通过 CNN 得到用户 u 的特征向量 x_u 和物品j的特征向量 y_j 后,将两者连接成向量 z =(x_u, y_j)。然后使用因子分解机来预测用户 u 对物品j的打分,

目标函数为公式7,其中 w _0 是全局偏置量,w _i 表示向量z 中第i个分量的权重, 则建模了各分量之间二阶的交互关系。

<<Joint Deep Modeling of Users and Items Using Reviews for Recommendation>> 评论打分预测的更多相关文章

  1. 《User Modeling with Neural Network for Review Rating Prediction》评论打分预测

    摘要: 传统的评分预测只考虑到了文本信息,没有考虑到用户的信息,因为同一个词 在不同的用户表达中是不一样的.同样good 一词, 有人觉得5分是good 有人觉得4分是good.但是传统的文本向量表达 ...

  2. Joint Deep Learning for Pedestrian Detection笔记

    1.结构图 Introduction Feature extraction, deformation handling, occlusion handling, and classification ...

  3. PCoA|NMDS|STRESS|RDA |RA|Unimodal|CCA|Generalized Joint Attribute Modeling

    PCoA:主坐标轴分析 数值型变量使用各种距离公式,而分类变量看是否相同,比如, Aabbcc || Aaffff 其中,两个相同,4个不同,一组6个,则(6+6-2*2)=8. PC0A与PCA区别 ...

  4. Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works(笔记)

    注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事 ...

  5. Paper Reading:Deep Neural Networks for YouTube Recommendations

    论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams ...

  6. 推荐系统系列(六):Wide&Deep理论与实践

    背景 在CTR预估任务中,线性模型仍占有半壁江山.利用手工构造的交叉组合特征来使线性模型具有"记忆性",使模型记住共现频率较高的特征组合,往往也能达到一个不错的baseline,且 ...

  7. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  8. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  9. 实时实例分割的Deep Snake:CVPR2020论文点评

    实时实例分割的Deep Snake:CVPR2020论文点评 Deep Snake for Real-Time Instance Segmentation 论文链接:https://arxiv.org ...

随机推荐

  1. Windows下Visual Studio 2013编译Lua 5.2.3

    1.创建一个Visual C++的Empty Project,如果需要支持Windows XP将Platform Toolset设置为Visual Studio 2013 - Windows XP ( ...

  2. kafka 的quick start(windows平台)

    h1, h2, h3, h4, h5, h6, p, blockquote { margin: 5px; padding: 5; } body { font-family: "Helveti ...

  3. U盘安装Centos7.1操作系统的问题记录

    需要的软硬件环境>>>>>>>>>>>>>>>>>1.服务器(笔者用的笔记本).U盘2.Cento ...

  4. [MySQL]修改root密码的4种方法(以windows为例)

    方法1: 用SET PASSWORD命令 首先登录MySQL. 格式:mysql> set password for 用户名@localhost = password('新密码'); 例子:my ...

  5. python selenium中等待元素出现及等待元素消失操作

    在自动化测试中,很多时候都会有等待页面某个元素出现后能进行下一步操作,或者列表中显示加载,直到加载完成后才进行下一步操作,但时间都不确定,如下图所示 幸运的是,在selenium 2后有一个模块exp ...

  6. 用js内置对象XMLHttpRequest 来用ajax

    步骤: /* 用XMLHTTPRequest来进行ajax异步数据交交互*/ 主要有几个步骤: //1.创建XMLHTTPRequest对象 //最复杂的一步 if (window.XMLHttpRe ...

  7. tomcat如何配置启动时自动部署webapps下的war包

    1.找到 tomcat安装目录/conf/server.xml 2.修改host元素的配置如下: <Host name="localhost" appBase="w ...

  8. 爬取博主的所有文章并保存为PDF文件

    继续改进上一个项目,上次我们爬取了所有文章,但是保存为TXT文件,查看不方便,而且还无法保存文章中的代码和图片. 所以这次保存为PDF文件,方便查看. 需要的工具: 1.wkhtmltopdf安装包, ...

  9. Js中对id和class属性进行模糊查询

    如题,从例子说明: <div id="divid" class="divclass" > <a id="divid-a" ...

  10. 7.20python线程(2)

    RLock 递归锁 线程事件