现在,重点是要了解并解决HMM 的三个问题。

问题1,已知整个模型,我女朋友告诉我,连续三天,她下班后做的事情分别是:散步,购物,收拾。那么,根据模型,计算产生这些行为的概率是多少。

问题2,同样知晓这个模型,同样是这三件事,我女朋友要我猜,这三天她下班后北京的天气是怎么样的。这三天怎么样的天气才最有可能让她做这样的事情。

问题3,最复杂的,我女朋友只告诉我这三天她分别做了这三件事,而其他什么信息我都没有。她要我建立一个模型,晴雨转换概率,第一天天气情况的概率分布,根据天气情况她选择做某事的概率分布。(惨绝人寰)

而要解决这些问题,伟大的大师们分别找出了对应的算法。问题一,Forward Algorithm,向前算法,或者 Backward Algo,向后算法。 问题二,Viterbi Algo,维特比算法。问题三,Baum-Welch Algo,鲍姆-韦尔奇算法(中文好绕口)。

作者:henry
链接:https://www.zhihu.com/question/20962240/answer/64187492
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

hmm三个问题的更多相关文章

  1. 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

    隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

  2. HMM:隐马尔可夫模型HMM

    http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模 ...

  3. 隐马尔可夫(HMM)模型

    隐马尔可夫(HMM)模型 隐马尔可夫模型,是一种概率图模型,一种著名的有向图模型,一种判别式模型.主要用于时许数据建模,在语音识别.自然语言处理等领域广泛应用. 概率图模型分为两类,一类:使用有向无环 ...

  4. hmm和Veterbi算法(一)

    只是略微的看了些,有点感觉,还未深入,做个记录. 参考: 隐马尔可夫 (HMM).前 / 后向算法.Viterbi 算法 再次总结 谁能通俗的讲解下 viterbi 算法? 数学之美第二版的第 26 ...

  5. Python实现HMM(隐马尔可夫模型)

    1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐 ...

  6. HMM隐马尔可夫模型来龙去脉(二)

    目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 H ...

  7. ZH奶酪:隐马尔可夫模型学习小记——forward算法+viterbi算法+forward-backward算法(Baum-welch算法)

    网上关于HMM的学习资料.博客有很多,基本都是左边摘抄一点,右边摘抄一点,这里一个图,那里一个图,公式中有的变量说不清道不明,学起来很费劲. 经过浏览几篇博文(其实有的地方写的也比较乱),在7张4开的 ...

  8. 应用HTK搭建语音拨号系统3:创建绑定状态的三音素HMM模型

    选自:http://maotong.blog.hexun.com/6261873_d.html 苏统华 哈尔滨工业大学人工智能研究室 2006年10月30日 声明:版权所有,转载请注明作者和来源 该系 ...

  9. HMM 自学教程(三)隐藏模式

    本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...

随机推荐

  1. linux环境下执行RF测试脚本

    1. 测试执行 测试管理平台需根据用户选中的测试案例,按照相应格式对执行启动命令进行组装和发送,触动案例的自动化测试执行. 命令格式根据测试模式(以项目为单位.以测试集为单位.以案例为单位)具有不同的 ...

  2. Jar命令

    JAR包是Java中所特有一种压缩文档,其实大家就可以把它理解为.zip包;当然也是有区别的,JAR包中有一个META-INF\MANIFEST.MF文件,当你打成JAR包时,它会自动生成. 一.ja ...

  3. Dictionary的应用

    在C#中,Dictionary提供快速的基于兼职的元素查找.他的结构是这样的:Dictionary<[key], [value]> ,当你有很多元素的时候可以使用它.它包含在System. ...

  4. 关于Kafka幂等producer的讨论

    众所周知,Kafka 0.11.0.0版本正式支持精确一次处理语义(exactly once semantics,下称EOS).Kafka的EOS主要体现在3个方面: 幂等producer:保证发送单 ...

  5. ARM+LINUX嵌入式系统的终端显示中文乱码解决

    前一段时间解决的一个问题,看起来是个小问题,实际解决这个问题却花了一个星期的晚上休息时间,记录分享一下. 问题描述: linux内核配置中NLS(native language support)已经选 ...

  6. iOS - keychain 详解及变化

    keychain介绍 iOS keychain 是一个相对独立的空间,保存到keychain钥匙串中的信息不会因为卸载/重装app而丢失, .相对于NSUserDefaults.plist文件保存等一 ...

  7. Java 实现文件批量重命名亲测可用(精简版)

    package com.cmge.utils; import java.io.*; import java.util.*; import java.util.Map.Entry; import com ...

  8. ldap objectclass

    LDAP中,一个条目必须包含一个objectClass属性,且需要赋予至少一个值.每一个值将用作一条LDAP条目进行数据存储的模板:模板中包含了一个条目必须被赋值的属性和可选的属性.      obj ...

  9. 【转载】.NET中锁6大处理方法 悲观乐观自己掌握

    我们为什么需要锁? 在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这就会产生冲突,这个就是著名的并发性问题. 图 1 并行性问题漫画 如何解决并发性问题? 借助正确的锁定策略可以解决并发性 ...

  10. ATM技术基本原理

    1 术语.定义和缩略语 1.1 术语.定义 术语/定义 说    明 ATM层 位于B-ISDN/ATM网络协议参考模型的第二层,完成交换.路由选择和信元复用功能.ATM层的基本处理单位是信元. AA ...