We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

求交点的水题

列一下直线的解析式推一下公式就行了

需要注意的是如果用斜率式要注意斜率不存在的情况 啊我好菜我都不记得直线别的解析式要怎么搞了

嗯觉得我写题目的速度实在是太慢了 今天过来也没有要读题结果这种水题还写了这么久

#include <iostream>
#include<stdio.h>
#include<math.h>
#define inf 0x3f3f3f3f using namespace std; struct point{
double x, y;
};
struct line{
point st, ed;
double k, b;
}; double getk(line a)
{
point ed = a.ed, st = a.st;
if(ed.x == st.x)return inf;
double k = (ed.y - st.y)/ (ed.x - st.x);
return k;
} double getb(line a)
{
point ed = a.ed, st = a.st;
if(ed.x == st.x)return -inf;
double b = st.y - st.x * a.k;
return b;
} point inter(line a, line b)
{
point p1 = a.st, p2 = a.ed, p3 = b.st, p4 = b.ed;
point in;
in.x = (p2.x - p1.x) * (p4.x - p3.x) * (p3.y - p1.y) + (p4.x - p3.x) * (p2.y - p1.y) * p1.x - (p2.x - p1.x) * (p4.y - p3.y) * p3.x;
in.x = in.x / ((p4.x - p3.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p4.y - p3.y));
in.y = a.k * in.x + a.b;
return in;
} int n;
point a, b, c, d;
line l1, l2;
int main()
{
while(scanf("%d",&n) != EOF){
cout<<"INTERSECTING LINES OUTPUT\n";
for(int i = 0; i < n; i++){
cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y;
l1.st = a;l1.ed = b;
l2.st = c;l2.ed = d;
l1.k = getk(l1);l1.b = getb(l1);
l2.k = getk(l2);l2.b = getb(l2);
if(l1.k == l2.k){
if(l1.k == inf){
if(l1.st.x == l2.st.x){
cout<<"LINE\n";
}
else{
cout<<"NONE\n";
}
}
else if(l1.b == l2.b){
cout<<"LINE\n";
}
else{
cout<<"NONE\n";
}
}
else if(l1.k == inf){
point ans;
ans.x = l1.st.x;
ans.y = l2.k * ans.x + l2.b;
printf("POINT %.2f %.2f\n", ans.x, ans.y);
}
else if(l2.k == inf){
point ans;
ans.x = l2.st.x;
ans.y = l1.k * ans.x + l1.b;
printf("POINT %.2f %.2f\n", ans.x, ans.y);
}
else{
point ans = inter(l1, l2);
printf("POINT %.2f %.2f\n", ans.x, ans.y);
} }
cout<<"END OF OUTPUT\n";
}
return 0;
}

poj1269 intersecting lines【计算几何】的更多相关文章

  1. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  2. POJ1269:Intersecting Lines(判断两条直线的关系)

    题目:POJ1269 题意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:直线相交判断.如果相交求交点. 首先先判断是否共线,之后判断是否平行,如果都不是就直接求交点 ...

  3. POJ 1269 Intersecting Lines --计算几何

    题意: 二维平面,给两条线段,判断形成的直线是否重合,或是相交于一点,或是不相交. 解法: 简单几何. 重合: 叉积为0,且一条线段的一个端点到另一条直线的距离为0 不相交: 不满足重合的情况下叉积为 ...

  4. POJ1269 Intersecting Lines[线段相交 交点]

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15145   Accepted: 66 ...

  5. [poj1269]Intersecting Lines

    题目大意:求两条直线的交点坐标. 解题关键:叉积的运用. 证明: 直线的一般方程为$F(x) = ax + by + c = 0$.既然我们已经知道直线的两个点,假设为$(x_0,y_0), (x_1 ...

  6. POJ1269 Intersecting Lines 2017-04-16 19:43 50人阅读 评论(0) 收藏

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15478   Accepted: 67 ...

  7. POJ 1269 Intersecting Lines(计算几何)

    题意:给定4个点的坐标,前2个点是一条线,后2个点是另一条线,求这两条线的关系,如果相交,就输出交点. 题解:先判断是否共线,我用的是叉积的性质,用了2遍就可以判断4个点是否共线了,在用斜率判断是否平 ...

  8. POJ1269:Intersecting Lines——题解

    http://poj.org/problem?id=1269 题目大意:给四个点,求前两个点所构成的直线和后两个点所构成的直线的位置关系(平行,重合,相交),如果是相交,输出交点坐标. ——————— ...

  9. ●POJ 1269 Intersecting Lines

    题链: http://poj.org/problem?id=1269 题解: 计算几何,直线交点 模板题,试了一下直线的向量参数方程求交点的方法. (方法详见<算法竞赛入门经典——训练指南> ...

随机推荐

  1. GCD (Grand Central Dispatch) 笔记

    GCD (Grand Central Dispatch) 是Apple公司开发的一种技术,它旨在优化多核环境中的并发操作并取代传统多线程的编程模式. 在Mac OS X 10.6和IOS 4.0之后开 ...

  2. 6.824 Lab 5: Caching Extents

    Introduction In this lab you will modify YFS to cache extents, reducing the load on the extent serve ...

  3. Javascript生成GUID算法

    var GUID = { date: new Date(), /* 生成GUID码 */ newGUID: function () { this.date = new Date(); var guid ...

  4. iOS 在已有项目添加CoreData

    本文转载至 http://cnbin.github.io/blog/2016/03/11/ios-zai-yi-you-xiang-mu-tian-jia-coredata/ 如果是新项目很好说,新建 ...

  5. javaBean的理解总结

    javaBean简单理解:javaBean在MVC设计模型中是model,又称模型层,在一般的程序中,我们称它为数据层,就是用来设置数据的属性和一些行为,然后我会提供获取属性和设置属性的get/set ...

  6. Android学习之适配器SimpleCursorAdapter

    三.   SimpleCursorAdapter与SimpleAdapter用法相近.只是将List对象换成了Cursor对象.而且SimpleCursorAdapter类构造方法的第四个参数from ...

  7. JS 省市县三级联动

    $(".area").change(function(ent,arg){ var $this = $(this), level = $(this).attr("id&qu ...

  8. echarts - 特殊需求实现代码汇总之【线图】篇

    时间过得好快,刚刚还是7月底,一转眼自己调整(浪费)了大半个月的时间.. 接下来要先总结一下自己之前的知识点,然后清掉自己的待办任务,重新轻装上阵! 继7月24的echarts-柱图配置汇总后,ech ...

  9. mvc4 初体验(一)

    [AllowAnonymous] [AllowAnonymous] 属性,允许匿名 在BaseControler里面加一个[Authorize],所有要验证的页面都继承BaseControler, 不 ...

  10. C#访问MySQL数据库帮助类

    MySQL数据库访问帮助类 1.项目添加引用官方MySQL动态库MySql.Data.dll 下载地址:MySql.Data.dll(也可以到官网下载动态库)项目添加引用 这里有一个Mysql帮助类的 ...