Get Many Persimmon Trees

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 3987 Accepted: 2599

Description

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as ‘Mishirazu Persimmon’, were planted. Since persimmon was Hayashi’s favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord.

For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate’s width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate’s width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.

Figure 1: Examples of Rectangular Estates

Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format.

N

W H

x1 y1

x2 y2



xN yN

S T

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.

The end of the input is indicated by a line that solely contains a zero.

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16

10 8

2 2

2 5

2 7

3 3

3 8

4 2

4 5

4 8

6 4

6 7

7 5

7 8

8 1

8 4

9 6

10 3

4 3

8

6 4

1 2

2 1

2 4

3 4

4 2

5 3

6 1

6 2

3 2

0

Sample Output

4

3

可以将二维转换成一维,然后在dp求解

#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h> using namespace std;
int dp[105];
int d[105];
int c[105][105];
int n;
int x,y;
int a,b;
int w,h;
int main()
{
int ans;
int sum;
while(scanf("%d",&n)!=EOF)
{
if(n==0)
break;
ans=0;
scanf("%d%d",&a,&b);
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
c[y][x]=1;
}
scanf("%d%d",&w,&h);
for(int i=1;i<=b-h+1;i++)
{
memset(d,0,sizeof(d));
memset(dp,0,sizeof(dp));
for(int p=0;p<h;p++)
for(int j=1;j<=a;j++)
d[j]+=c[i+p][j];
for(int k=1;k<=w;k++)
dp[w]+=d[k];
for(int j=w+1;j<=a;j++)
{
sum=0;
for(int k=j;k>=j-w+1;k--)
sum+=d[k];
dp[j]=max(dp[j-1],sum); } if(ans<dp[a])
ans=dp[a];
}
printf("%d\n",ans);
}
}

POJ-2029 Get Many Persimmon Trees(动态规划)的更多相关文章

  1. (简单) POJ 2029 Get Many Persimmon Trees,暴力。

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  2. POJ 2029 Get Many Persimmon Trees (二维树状数组)

    Get Many Persimmon Trees Time Limit:1000MS    Memory Limit:30000KB    64bit IO Format:%I64d & %I ...

  3. POJ 2029 Get Many Persimmon Trees

    Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3243 Accepted: 2 ...

  4. poj 2029 Get Many Persimmon Trees 各种解法都有,其实就是瞎搞不算吧是dp

    连接:http://poj.org/problem?id=2029 题意:给你一个map,然后在上面种树,问你h*w的矩形上最多有几棵树~这题直接搜就可以.不能算是DP 用树状数组也可作. #incl ...

  5. POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)

    题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...

  6. poj 2029 Get Many Persimmon Trees (dp)

    题目链接 又是一道完全自己想出来的dp题. 题意:一个w*h的图中,有n个点,给一个s*t的圈,求这个圈能 圈的最多的点 分析:d[i][j]代表i行j列 到第一行第一列的这个方框内有多少个点, 然后 ...

  7. POJ 2029 Get Many Persimmon Trees(水题)

    题意:在w*h(最大100*100)的棋盘上,有的格子中放有一棵树,有的没有.问s*t的小矩形,最多能含有多少棵树. 解法:最直接的想法,设d[x1][y1][x2][y2]表示选择以(x1, y1) ...

  8. POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】

    <题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...

  9. POJ 2029 Get Many Persimmon Trees 【 二维树状数组 】

    题意:给出一个h*w的矩形,再给出n个坐标,在这n个坐标种树,再给出一个s*t大小的矩形,问在这个s*t的矩形里面最多能够得到多少棵树 二维的树状数组,求最多能够得到的树的时候,因为h,w都不超过50 ...

随机推荐

  1. eclipse 生成webservice 客户端

    一.eclipse 自动生成的web客户端代码 调用客户端

  2. pytesseract 报windows err no2的错误

    需要把源安装文件pytesseract.py的修改为,tesseract_cmd = 'C:/Program Files (x86)/Tesseract-OCR/tesseract.exe' 原始是t ...

  3. java图片裁剪和java生成缩略图

    一.缩略图 在浏览相冊的时候.可能须要生成相应的缩略图. 直接上代码: public class ImageUtil { private Logger log = LoggerFactory.getL ...

  4. Maven -- 发布jar包至远程仓库

    啦啦啦

  5. 关于WPF自定义控件(导航)

    1.在WPF中自定义控件(1)概述 2.在WPF中自定义控件(2) UserControl 3.在WPF中自定义控件(3) CustomControl (上) 4.在WPF中自定义控件(3) Cust ...

  6. swift开发之--代理协议的使用

    swift代理的使用,和oc版本有区别,区别还是蛮大的,不过和oc一样都是用于反向传值: 实现如下: 1,声明两个类 2,实现流程,viewcontroller页面点击按钮进入firstVC页面,然后 ...

  7. 【RF库Collections测试】lists should be equal

    场景一:msg=None 场景二:自定义msg 场景三:自定义msg和values,且values为布尔类型False或者字符串False和No Values 场景四:自定义msg和values,且v ...

  8. mac 卸载idea

    卸载MAC中的IDEA Intellij 首先在应用里面右键移动到垃圾桶 然后使用命令行: cd Users/xxx/Library/ 上面的xxx对应你的用户名,然后输入 rm -rf Logs/I ...

  9. Java中过滤器和拦截器的区别

    1.拦截器是基于java反射机制的,而过滤器是基于函数回调的. 2.过滤器依赖于servlet容器,而拦截器不依赖于servlet容器. 3.拦截器只对action起作用,而过滤器几乎可以对所有请求起 ...

  10. Glide加载图片缓存库出现——You cannot start a load for a destroyed activity

    请记住一句话:不要再非主线程里面使用Glide加载图片,如果真的使用了,请把context参数换成getApplicationContext.