There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

Input

Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value。

Output

Write answer to the output.

Sample Input

1 1 -3
0 4
0 4

Sample Output

4

思路:

又是一道很明显的exgcd题,这次做完,感觉对exgcd了解更加多了。

对a要进行符号判断,负号就要变为正号,相对应的区间x1,x2也要取对称区间;b同理。c变换a,b也要一起变换(二元一次方程)。其他的可以参考之前写过的题:循环狂魔 和 青蛙也要找女朋友

一道解二元一次方程的题,最后一点并集那里画个图应该就能解决了。中间还有一些判断要分布讨论。

又找到一个ceil()用来求向上取整(里面必须要double,和floor()一样,不然提交就会CE...)

代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack>
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#include<sstream>
#define INF 0x3f3f3f3f
#define ll long long
const int N=10005;
const ll MOD=998244353;
using namespace std;
ll ex_gcd(ll a,ll b,ll &x,ll &y){
ll d,t;
if(b==0){
x=1;
y=0;
return a;
}
d=ex_gcd(b,a%b,x,y);
t=x-a/b*y;
x=y;
y=t;
return d;
}
int main(){
ll a,b,c,x1,x2,y1,y2,x,y;
cin>>a>>b>>c>>x1>>x2>>y1>>y2;
c=-c;
if(c<0){
c=-c;
a=-a;
b=-b;
}
if(a<0){
a=-a;
swap(x1,x2);
x1=-x1;
x2=-x2;
}
if(b<0){
b=-b;
swap(y1,y2);
y1=-y1;
y2=-y2;
}
ll d=ex_gcd(a,b,x,y);
if(a==0 || b==0){ //ax+by=-c
if(a==0 && b==0){
if(c==0){
cout<<(x2-x1+1)*(y2-y1+1)<<endl;
return 0;
}
else{
cout<<0<<endl;
return 0;
}
}
else if(a==0){
if(c%b==0 && c/b>=y1 && c/b<=y2){
cout<<(x2-x1+1)<<endl;
return 0;
}
else{
cout<<0<<endl;
return 0;
}
}
else if(b==0){
if(c%a==0 && c/a>=x1 && c/a<=x2){
cout<<(y2-y1+1)<<endl;
return 0;
}
else{
cout<<0<<endl;
return 0;
}
}
}
x=x*c/d;
y=y*c/d;
ll k1=b/d,k2=a/d;
if(c%d!=0){
cout<<0<<endl;
return 0;
}
else{
ll r=min(floor((x2-x)*1.0/k1),floor((y-y1)*1.0/k2)) ,l=max(ceil((x1-x)*1.0/k1),ceil((y-y2)*1.0/k2));
if(r>=l){
cout<<r-l+1<<endl;
}
else{
cout<<0<<endl;
}
}
return 0;
}

The equation (扩展欧几里得)题解的更多相关文章

  1. SGU 106 The equation 扩展欧几里得好题

    扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...

  2. SGU 106 The Equation 扩展欧几里得应用

    Sol:线性不定方程+不等式求解 证明的去搜下别人的证明就好了...数学题. #include <algorithm> #include <cstdio> #include & ...

  3. 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程

    什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...

  4. Codeforces7C 扩展欧几里得

    Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  5. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  6. UVA 10673 扩展欧几里得

    题意:给出x 和k,求解p和q使得等式x = p[x / k] + q [ x / k], 两个[x / k]分别为向下取整和向上取整 题解:扩展欧几里得 //meek///#include<b ...

  7. POJ2115 - C Looooops(扩展欧几里得)

    题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...

  8. 【扩展欧几里得】NOIP2012同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  9. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  10. [P1516]青蛙的约会 (扩展欧几里得/中国剩余定理?)

    每日做智推~ 一看就是一道数学题. 再看是一道公约数的题目. 标签是中国孙子定理. 题解是扩展欧几里得 (笑) 一开始没看数据范围 只有50分 开一个longlong就可以了 #include< ...

随机推荐

  1. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  2. flask中的信号量

    一.在flask中自定义信号 from flask import Flask, current_app, flash, render_template from flask.signals impor ...

  3. 【CSS3】CSS3自学

    CSS3学习网址:http://www.runoob.com/css3/css3-tutorial.html

  4. [vue]组件的创建(componet)和销毁(keep-alive缓存)和父子dom同步nextTick

    思路: 1. 组件的好处,重用性 2. 组件对的slot用法 3. 子如何调用父的数据 4. 子如何触发父的方法执行 5. 父如何触发子的方法执行 6. 如何创建组件和销毁自建--如何缓存避免每次切换 ...

  5. python接口测试中安装whl格式的requests第三方模块

    下载 安装 requests第三方模块 下载:http://docs.python-requests.org/en/latest/user/install/#install 我下载是 https:// ...

  6. [LeetCode] questions conclustion_BFS, DFS

    BFS, DFS 的题目总结. Directed graph: Directed Graph Loop detection and if not have, path to print all pat ...

  7. JSP—cookie

    cookie的作用: 1.对特定对象的追踪,如访问次数,最后访问时间,路径等 2.统计网页的浏览次数 3.在cookie有效期内,记录用户的登录信息 4.实现个性化,记录用户的喜好 5.保存的数据存在 ...

  8. MacaW Baby Learns Computer

    A - Macaw Baby Learns Computer Time Limit:1000MS     Memory Limit:0KB     64bit IO Format:%lld & ...

  9. wonderware historian 10安装配置

    安装文件为: 关闭用户控制 配置dcom. 安装.net framework 3.5 安装sql server,打sp1补丁 安装Historain 停止ww服务 安装sp1包 重启机器,启动ww服务 ...

  10. python 跳过可迭代对象的开始部分

    想遍历一个可迭代对象,但是它开始的某些元素你并不感兴趣,想跳过它们 itertools 模块中有一些函数可以完成这个任务.首先介绍的是itertools.dropwhile() 函数.使用时,你给它传 ...