论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
- MobileNet由Google提出的一种新的卷积计算方法,旨在加速卷积计算过程。
- 为了减小网络模型大小,提出了两种比较暴力的裁剪方法。
(1) 直接对channel进行裁剪,这种随机砍掉一些channel,也太暴力了吧,砍多了效果肯定不好,想想都知道。
(2) 减少输入图像的分辨率,也就是减小输入的尺寸大小。
- 我们还是关注新的卷积计算方法,要做压缩的话,还是另辟蹊径。

1. Full convolution VS. Depthwise separable convolution
1.1 Full convolution

- M表示输入的channel, N表示输出的channel,Dk表示kernel size.
- 我们可以看到输出的每一个channel,都跟所有的输入channel有关,也就是说,对于输出的一个channel,都是M个kernel与M个channel卷积以后的求和结果。
- 差别就在这里!在depthwise separable中,每一个输出的channel,只和一个输入的channel有关。
1.2 Depthwise separable convolution

输入M个channel,那么输出也是M个channel,每一个channel都是由一个kernel在一个channel卷积以后得到的结果,不在是和所有的输入相关了。这也就是为什么名字叫做depthwise separable(深度级的分离,channel的分离)。
但是我们发现输出只有M个channel,而我们想要输出N个channel,这个时候我们应该想到1*1的convolution,这个时候的卷积就是full convolution。这个时候输出的每一个channel都和输入有关了,相当于输入的加权求和。所以1x1的卷积有联合(combine)的作用。
2. 计算量对比
- 只要理解了两个的差别,不难算出计算直接的差别。

- Dk表示kernel size, M表示输入的channel,也就是feature map的个数,N表示输出的channel。Df表示feature map的大小,也就是width和height, 上面这个式子再一次验证了我们上面说的,输出的每一个channel都和输入的所有channel有关。

求和的左半部分,表示depthwise separable的计算量,可以看到输出为M个channel,每个输出channel只和一个channel有关。
求和的有半部分,表示1x1 pointwise convolution,可以看到每一个输出channel,都和M个输入有关(M个输入的加权求和)。
计算量较少比例

3. 模型压缩

上面公式可以看到直接对输入的M个channel进行的压缩(随机采样)

上面公式可以看到对不仅对输出的channel进行了采样,对输入图像的分辨率也进行了减小。
4. 对比实验
4.1 参数量的对比

4.2 实验结果

5. 实现
- Tensorflow的实现: https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.md
- Caffe实现(trick): https://github.com/shicai/MobileNet-Caffe
(通过caffe 的group参数来实现depthwise的操作的,由于实现的问题和cuda/cudnn对其支持得不好,训练起来十分慢。前向预测时在CPU上的耗时大概是googlenet的70%。这个数据参考一篇博文的,未实践过。) - Pytorch实现:https://github.com/marvis/pytorch-mobilenet
6. 总结
- 根据实践经验的总结,这种新的卷积计算方式,对运算速度的改进还是比较明显的,精度影响不是很大,至于文中说的两个裁剪方法,我觉得还是慎重使用比较好。
- 现在市面上已经有很多裁剪方法了,没必要用这么暴力的进行裁剪来压缩模型大小。
论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)的更多相关文章
- [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...
- [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...
- 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...
- 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...
- 【网络结构】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文解析
目录 0. Paper link 1. Overview 2. Depthwise Separable Convolution 2.1 architecture 2.2 computational c ...
- Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
目录 1. 故事 2. MobileNet 2.1 深度可分离卷积 2.2 网络结构 2.3 引入两个超参数 3. 实验 本文提出了一种轻量级结构MobileNets.其基础是深度可分离卷积操作. M ...
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...
- 【MobileNet-V1】-2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications-论文阅读
2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew H ...
- 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications
论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...
随机推荐
- 正则验证ip
用python爬获取这样一条数据: <td class="ip" id="ip"><p style="display: none;& ...
- Java GUI程序设计
在实际应用中,我们见到的许多应用界面都属于GUI图形型用户界面.如:我们点击QQ图标,就会弹出一个QQ登陆界面的对话框.这个QQ图标就可以被称作图形化的用户界面. 其实,用户界面的类型分为两类:Com ...
- python 基础 字典
字典操作 字典一种key - value 的数据类型 特性: 无顺序 去重 查询速度快,比列表快多了 比list占用内存多 语法: info = { 'abc001': "Ben" ...
- InnoSQL/MySQL并行复制的实现与配置
InnoSQL/MySQL并行复制的实现与配置 http://www.innomysql.net/article/6276.html 并行复制之前的解决方案 InnoSQL在5.5.30-v4版本中支 ...
- react.js 教程之 Installation 安装
react.js 教程之 Installation 安装 运行方法 运行react有三种方式 1.如果你只是学习react,可以在http://codepen.io/gaearon/pen/rrpgN ...
- Tomcat修改端口和编码配置
1.打开Tomcat中server.xml文件,找到原本的8080,修改成没被占用的端口: 2.在这个标签里增加 URIEncoding="utf-8",修改请求的编码.
- python接口自动化-参数化
原文地址https://www.cnblogs.com/yoyoketang/p/6891710.html python接口自动化 -参数关联(一)https://www.cnblogs.com/11 ...
- testNG入门详解
TestNG 的注释: @DataProvider @ExpectedExceptions @Factory @Test @Parameters <suite name="Parame ...
- 软件包管理:rpm命令管理-查询
yum没有rpm查询的多. 使用包名时无所谓使用位置.因为查询是在后台数据库中查询的. 记忆是只需知道安装和升级时要加包全名,其余加包名.其实未安装的加包全名. rpm包可以手工指定安装路径,但不建议 ...
- Twitter OA prepare: Visit element of the array
分析:就是建立一个boolean array来记录array里面每个元素的访问情况,遇到访问过的元素就停止visiting,返回未访问的结点个数 public int visiting(int[] A ...