import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

labelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training")
allFruitsImageName = []
for i in range(len(labelList)):
allFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]))
allsortImageName = []
for i in range(len(allFruitsImageName)):
oneClass = allFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
allsortImageName.append(sortnrImageName)

trainData = []
for i in range(len(allsortImageName)):
one = []
for j in range(len(allsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][j]) #读取图片
gray=color.rgb2gray(rgb) #将彩色图片转换为灰度图片
dst=transform.resize(gray,(64,64)) #调整大小,图像分辨率为64*64
one.append(dst)
trainData.append(one)
print(np.shape(trainData))

trainLabelNum = []
for i in range(len(trainData)):
for j in range(len(trainData[i])):
trainLabelNum.append(i)
imageGray = trainData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum",trainLabelNum)
print("图片处理完了")

testLabelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test")
testallFruitsImageName = []
for i in range(len(testLabelList)):
testallFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]))
testallsortImageName = []
for i in range(len(testallFruitsImageName)):
oneClass = testallFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
testallsortImageName.append(sortnrImageName)

testData = []
for i in range(len(testallsortImageName)):
one = []
for j in range(len(testallsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]+"\\" + testallsortImageName[i][j])
gray=color.rgb2gray(rgb)
dst=transform.resize(gray,(64,64))
one.append(dst)
testData.append(one)
print(np.shape(testData))

testLabelNum = []
for i in range(len(testData)):
for j in range(len(testData[i])):
testLabelNum.append(i)
imageGray = testData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum",testLabelNum)
print("图片处理完了")

import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

trainDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage")
trainDataList = []
for i in range(len(trainDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+trainDataDirList[i])
trainDataList.append(image)
trainLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum.npy")

testDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage")
testDataList = []
for i in range(len(testDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+testDataDirList[i])
testDataList.append(image)
testLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum.npy")

import tensorflow as tf
from random import shuffle

INPUT_NODE = 64*64
OUT_NODE = 77
IMAGE_SIZE = 64
NUM_CHANNELS = 1
NUM_LABELS = 77
#第一层卷积层的尺寸和深度
CONV1_DEEP = 64
CONV1_SIZE = 5
#第二层卷积层的尺寸和深度
CONV2_DEEP = 128
CONV2_SIZE = 5
#全连接层的节点数
FC_SIZE = 1024

def inference(input_tensor, train, regularizer):
#卷积
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
#池化
with tf.variable_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#卷积
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
#卷积向前学习
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
#池化
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer5-conv3'):
conv3_weights = tf.Variable(tf.random_normal([5,5,CONV2_DEEP,512],stddev=0.1),name='weight')
conv3_biases = tf.Variable(tf.random_normal([512]),name="bias")
#卷积向前学习
conv3 = tf.nn.conv2d(pool2,conv3_weights,strides=[1,1,1,1],padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3,conv3_biases))
#池化
with tf.variable_scope('layer6-pool3'):
pool3 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer7-conv4'):
conv4_weights = tf.Variable(tf.random_normal([5,5,512,64],stddev=0.1),name='weight')
conv4_biases = tf.Variable(tf.random_normal([64]),name="bias")
#卷积向前学习
conv4 = tf.nn.conv2d(pool3,conv4_weights,strides=[1,1,1,1],padding='SAME')
relu4 = tf.nn.relu(tf.nn.bias_add(conv4,conv4_biases))
#池化
with tf.variable_scope('layer7-pool4'):
pool4 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#变型
pool_shape = pool4.get_shape().as_list()
#计算最后一次池化后对象的体积(数据个数\节点数\像素个数)
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
#根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
reshaped = tf.reshape(pool4,[-1,nodes])

#全连接层
with tf.variable_scope('layer8-fc1'):
fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
#预测
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
if(train):
fc1 = tf.nn.dropout(fc1,0.5)
#全连接层
with tf.variable_scope('layer9-fc2'):
fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
#预测
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
if(train):
fc2 = tf.nn.dropout(fc2,0.5)
#全连接层
with tf.variable_scope('layer10-fc3'):
fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
#预测
logit = tf.matmul(fc2,fc3_weights)+fc3_biases
return logit

import keras
import time
from keras.utils import np_utils

X = np.vstack(trainDataList).reshape(-1, 64,64,1)
Y = np.vstack(trainLabelNum).reshape(-1, 1)
Xrandom = []
Yrandom = []
index = [i for i in range(len(X))]
shuffle(index)
for i in range(len(index)):
Xrandom.append(X[index[i]])
Yrandom.append(Y[index[i]])
np.save("E:\\Xrandom",Xrandom)
np.save("E:\\Xrandom",Yrandom)

X = Xrandom
Y = Yrandom
Y=keras.utils.to_categorical(Y,OUT_NODE)

batch_size = 200
n_classes=77
epochs=20#循环次数
learning_rate=1e-4
batch_num=int(np.shape(X)[0]/batch_size)
dropout=0.75

x=tf.placeholder(tf.float32,[None,64,64,1])
y=tf.placeholder(tf.float32,[None,n_classes])
# keep_prob = tf.placeholder(tf.float32)

pred=inference(x,1,"regularizer")

cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))

# 三种优化方法选择一个就可以
optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)
keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob")
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
# merged = tf.summary.merge_all()
init=tf.global_variables_initializer()
start_time = time.time()

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
for j in range(batch_num):
start = (j*batch_size)
end = start+batch_size
sess.run(optimizer, feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 0.5})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 1})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))

end_time = time.time()
print('运行时间:',(end_time-start_time))
print('Optimization Completed')

def gen_small_data(inputs,batch_size):
i=0
j = True
while j:
small_data=inputs[i:(batch_size+i)]
i+=batch_size
if len(small_data)!=0:
yield small_data
if len(small_data)==0:
j=False

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
x_=gen_small_data(X,batch_size)
y_=gen_small_data(Y,batch_size)
X = next(x_)
Y = next(y_)
sess.run(optimizer, feed_dict={x:X,y:Y})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X,y:Y})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc))

labelNameList = []
for i in range(len(labelList)):
labelNameList.append("label:"+labelList[i])
theFireImage = []
for i in range(len(allsortImageName)):
theFireImage.append(plt.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][4]))
gs = plt.GridSpec(11,7)
fig = plt.figure(figsize=(10,10))
imageIndex = 0
ax = plt.gca()
for i in range(11):
for j in range(7):
fi = fig.add_subplot(gs[i,j])
fi.imshow(theFireImage[imageIndex])
plt.xticks(())
plt.yticks(())
plt.axis('off')
plt.title(labelNameList[imageIndex],fontsize=7)
ax.set_xticks([])
ax.set_yticks([])
ax.spines['top'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_color('none')
imageIndex += 1
plt.show()

吴裕雄 python神经网络 水果图片识别(1)的更多相关文章

  1. 吴裕雄 python神经网络 水果图片识别(5)

    #-*- coding:utf-8 -*-### required libaraiedimport osimport matplotlib.image as imgimport matplotlib. ...

  2. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  3. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  4. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  5. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

随机推荐

  1. vue-router 结合源码分析原理

    路由响应过程: 浏览器发出请求 服务器监听到num端口(或443)有请求过来,并解析url路径 根据服务器的路由配置,返回相应信息(可以是 html 字串,也可以是 json 数据,图片等) 浏览器根 ...

  2. Vs2008应用程序升级为vs2012

    Vs2008应用程序升级为vs2012 编写人:左丘文 2015-5-21 近来一直有想法,想将开发环境升级 vs2008到vs2012,在此做个小结,将自己碰到的一系统问题,分享出来,以供参考.有兴 ...

  3. android studio 更新 Gradle错误解决方法(Gradle sync failed)

    android studio 更新 Gradle错误解决方法   Android Studio每次更新版本都会更新Gradle这个插件,但由于长城的问题每次更新都是失败,又是停止在Refreshing ...

  4. 杂项:mPaaS

    ylbtech-杂项:mPaaS 1. 概述返回顶部 mPaaS 是源于支付宝 App 的移动开发平台,为移动开发.测试.运营及运维提供云到端的一站式解决方案,能有效降低技术门槛.减少研发成本.提升开 ...

  5. 【转载】 java利用snmp4j包来读取snmp协议数据(Manager端)

    https://www.cnblogs.com/xdp-gacl/p/4187089.html http://doc.okbase.net/yuanfy008/archive/265663.html ...

  6. Work01

    7101:我是最酷的张绥:我的爱是弹吉他,唱歌,游泳,打篮球...: 我的博客是:https://www.cnblogs.com/Mrzs/ 我的码云个人主页是:https://gitee.com/s ...

  7. Xss漏洞原理分析及简单的讲解

    感觉百度百科 针对XSS的讲解,挺不错的,转载一下~   XSS攻击全称跨站脚本攻击,是为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XS ...

  8. unity3d动态加载dll的API以及限制

    Unity3D的坑系列:动态加载dll 一.使用限制 现在参与的项目是做MMO手游,目标平台是Android和iOS,iOS平台不能动态加载dll(什么原因找乔布斯去),可以直接忽略,而在Androi ...

  9. Salesforce开源TransmogrifAI:用于结构化数据的端到端AutoML库

    AutoML 即通过自动化的机器学习实现人工智能模型的快速构建,它可以简化机器学习流程,方便更多人利用人工智能技术.近日,软件行业巨头 Salesforce 开源了其 AutoML 库 Transmo ...

  10. 关于json 转换BigDecimal精度丢失问题

    今天在转换一个关于金额字段发现一个关于json转换的bug  目前尚未深入观察 问题: 如果金钱为bigdecimal json转换后不会丢失精度 但是通过@responsebody 返回到前端后发现 ...