import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

labelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training")
allFruitsImageName = []
for i in range(len(labelList)):
allFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]))
allsortImageName = []
for i in range(len(allFruitsImageName)):
oneClass = allFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
allsortImageName.append(sortnrImageName)

trainData = []
for i in range(len(allsortImageName)):
one = []
for j in range(len(allsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][j]) #读取图片
gray=color.rgb2gray(rgb) #将彩色图片转换为灰度图片
dst=transform.resize(gray,(64,64)) #调整大小,图像分辨率为64*64
one.append(dst)
trainData.append(one)
print(np.shape(trainData))

trainLabelNum = []
for i in range(len(trainData)):
for j in range(len(trainData[i])):
trainLabelNum.append(i)
imageGray = trainData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum",trainLabelNum)
print("图片处理完了")

testLabelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test")
testallFruitsImageName = []
for i in range(len(testLabelList)):
testallFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]))
testallsortImageName = []
for i in range(len(testallFruitsImageName)):
oneClass = testallFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
testallsortImageName.append(sortnrImageName)

testData = []
for i in range(len(testallsortImageName)):
one = []
for j in range(len(testallsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]+"\\" + testallsortImageName[i][j])
gray=color.rgb2gray(rgb)
dst=transform.resize(gray,(64,64))
one.append(dst)
testData.append(one)
print(np.shape(testData))

testLabelNum = []
for i in range(len(testData)):
for j in range(len(testData[i])):
testLabelNum.append(i)
imageGray = testData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum",testLabelNum)
print("图片处理完了")

import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

trainDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage")
trainDataList = []
for i in range(len(trainDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+trainDataDirList[i])
trainDataList.append(image)
trainLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum.npy")

testDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage")
testDataList = []
for i in range(len(testDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+testDataDirList[i])
testDataList.append(image)
testLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum.npy")

import tensorflow as tf
from random import shuffle

INPUT_NODE = 64*64
OUT_NODE = 77
IMAGE_SIZE = 64
NUM_CHANNELS = 1
NUM_LABELS = 77
#第一层卷积层的尺寸和深度
CONV1_DEEP = 64
CONV1_SIZE = 5
#第二层卷积层的尺寸和深度
CONV2_DEEP = 128
CONV2_SIZE = 5
#全连接层的节点数
FC_SIZE = 1024

def inference(input_tensor, train, regularizer):
#卷积
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
#池化
with tf.variable_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#卷积
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
#卷积向前学习
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
#池化
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer5-conv3'):
conv3_weights = tf.Variable(tf.random_normal([5,5,CONV2_DEEP,512],stddev=0.1),name='weight')
conv3_biases = tf.Variable(tf.random_normal([512]),name="bias")
#卷积向前学习
conv3 = tf.nn.conv2d(pool2,conv3_weights,strides=[1,1,1,1],padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3,conv3_biases))
#池化
with tf.variable_scope('layer6-pool3'):
pool3 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer7-conv4'):
conv4_weights = tf.Variable(tf.random_normal([5,5,512,64],stddev=0.1),name='weight')
conv4_biases = tf.Variable(tf.random_normal([64]),name="bias")
#卷积向前学习
conv4 = tf.nn.conv2d(pool3,conv4_weights,strides=[1,1,1,1],padding='SAME')
relu4 = tf.nn.relu(tf.nn.bias_add(conv4,conv4_biases))
#池化
with tf.variable_scope('layer7-pool4'):
pool4 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#变型
pool_shape = pool4.get_shape().as_list()
#计算最后一次池化后对象的体积(数据个数\节点数\像素个数)
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
#根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
reshaped = tf.reshape(pool4,[-1,nodes])

#全连接层
with tf.variable_scope('layer8-fc1'):
fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
#预测
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
if(train):
fc1 = tf.nn.dropout(fc1,0.5)
#全连接层
with tf.variable_scope('layer9-fc2'):
fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
#预测
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
if(train):
fc2 = tf.nn.dropout(fc2,0.5)
#全连接层
with tf.variable_scope('layer10-fc3'):
fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
#预测
logit = tf.matmul(fc2,fc3_weights)+fc3_biases
return logit

import keras
import time
from keras.utils import np_utils

X = np.vstack(trainDataList).reshape(-1, 64,64,1)
Y = np.vstack(trainLabelNum).reshape(-1, 1)
Xrandom = []
Yrandom = []
index = [i for i in range(len(X))]
shuffle(index)
for i in range(len(index)):
Xrandom.append(X[index[i]])
Yrandom.append(Y[index[i]])
np.save("E:\\Xrandom",Xrandom)
np.save("E:\\Xrandom",Yrandom)

X = Xrandom
Y = Yrandom
Y=keras.utils.to_categorical(Y,OUT_NODE)

batch_size = 200
n_classes=77
epochs=20#循环次数
learning_rate=1e-4
batch_num=int(np.shape(X)[0]/batch_size)
dropout=0.75

x=tf.placeholder(tf.float32,[None,64,64,1])
y=tf.placeholder(tf.float32,[None,n_classes])
# keep_prob = tf.placeholder(tf.float32)

pred=inference(x,1,"regularizer")

cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))

# 三种优化方法选择一个就可以
optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)
keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob")
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
# merged = tf.summary.merge_all()
init=tf.global_variables_initializer()
start_time = time.time()

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
for j in range(batch_num):
start = (j*batch_size)
end = start+batch_size
sess.run(optimizer, feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 0.5})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 1})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))

end_time = time.time()
print('运行时间:',(end_time-start_time))
print('Optimization Completed')

def gen_small_data(inputs,batch_size):
i=0
j = True
while j:
small_data=inputs[i:(batch_size+i)]
i+=batch_size
if len(small_data)!=0:
yield small_data
if len(small_data)==0:
j=False

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
x_=gen_small_data(X,batch_size)
y_=gen_small_data(Y,batch_size)
X = next(x_)
Y = next(y_)
sess.run(optimizer, feed_dict={x:X,y:Y})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X,y:Y})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc))

labelNameList = []
for i in range(len(labelList)):
labelNameList.append("label:"+labelList[i])
theFireImage = []
for i in range(len(allsortImageName)):
theFireImage.append(plt.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][4]))
gs = plt.GridSpec(11,7)
fig = plt.figure(figsize=(10,10))
imageIndex = 0
ax = plt.gca()
for i in range(11):
for j in range(7):
fi = fig.add_subplot(gs[i,j])
fi.imshow(theFireImage[imageIndex])
plt.xticks(())
plt.yticks(())
plt.axis('off')
plt.title(labelNameList[imageIndex],fontsize=7)
ax.set_xticks([])
ax.set_yticks([])
ax.spines['top'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_color('none')
imageIndex += 1
plt.show()

吴裕雄 python神经网络 水果图片识别(1)的更多相关文章

  1. 吴裕雄 python神经网络 水果图片识别(5)

    #-*- coding:utf-8 -*-### required libaraiedimport osimport matplotlib.image as imgimport matplotlib. ...

  2. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  3. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  4. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  5. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

随机推荐

  1. RK3399 Android 7.1 删除repo后编译报错

    CPU:RK3399 系统:Android 7.1 瑞芯微使用的是 repo 来进行代码管理,但我们需要用 git 来管理,所以就删除了 repo,但是编译就报错,如下:Server is alrea ...

  2. ES(3): ES Cluster Extended Azure Storage

    Azure VM的磁盘空间远远不能满足ES集群存储需求(还需除掉VM的临时盘),同时也未找着ES配置 block blob storage 存储的组件,因此下文介绍通过挂载附加盘的方式增加ES集群存储 ...

  3. ubuntu 安装时分辨率太小 导致无法继续安装

    当分辨率是800 *600时,底部的按钮无法显示,不能继续安装. 可以在右上角,点击电源按钮,在系统设置中调整显示的分辨率后,继续安装.

  4. bzoj3503 和谐矩阵

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果存在).给定矩阵的行数和列数,请计算并输出一 ...

  5. css display table使用小例子实验

    display的下面: table: 此元素会作为块级表格来显示(类似 <table>),表格前后带有换行符. table-row 此元素会作为一个表格行显示(类似 <tr>) ...

  6. Java中的volatile关键字为什么不是不具有原子性

    Java中long赋值不是原子操作,因为先写32位,再写后32位,分两步操作,而AtomicLong赋值是原子操作,为什么?为什么volatile能替代简单的锁,却不能保证原子性?这里面涉及volat ...

  7. flume系统使用以及与storm的初步整合

      Flume NG的简单使用可以参考介绍文档:http://blog.csdn.net/pelick/article/details/18193527,图片也来源此blog:       下载完fl ...

  8. Spark学习笔记4:数据读取与保存

    Spark对很多种文件格式的读取和保存方式都很简单.Spark会根据文件扩展名选择对应的处理方式. Spark支持的一些常见文件格式如下: 文本文件 使用文件路径作为参数调用SparkContext中 ...

  9. 《Linux内核精髓:精通Linux内核必会的75个绝技》目录

    1章 内核入门HACK #1 如何获取Linux内核HACK #2 如何编译Linux内核HACK #3 如何编写内核模块HACK #4 如何使用GitHACK #5 使用checkpatch.pl检 ...

  10. WebLogic 任意文件上传 远程代码执行漏洞 (CVE-2018-2894)------->>>任意文件上传检测POC

    前言: Oracle官方发布了7月份的关键补丁更新CPU(Critical Patch Update),其中针对可造成远程代码执行的高危漏洞 CVE-2018-2894 进行修复: http://ww ...