import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

labelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training")
allFruitsImageName = []
for i in range(len(labelList)):
allFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]))
allsortImageName = []
for i in range(len(allFruitsImageName)):
oneClass = allFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
allsortImageName.append(sortnrImageName)

trainData = []
for i in range(len(allsortImageName)):
one = []
for j in range(len(allsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][j]) #读取图片
gray=color.rgb2gray(rgb) #将彩色图片转换为灰度图片
dst=transform.resize(gray,(64,64)) #调整大小,图像分辨率为64*64
one.append(dst)
trainData.append(one)
print(np.shape(trainData))

trainLabelNum = []
for i in range(len(trainData)):
for j in range(len(trainData[i])):
trainLabelNum.append(i)
imageGray = trainData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum",trainLabelNum)
print("图片处理完了")

testLabelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test")
testallFruitsImageName = []
for i in range(len(testLabelList)):
testallFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]))
testallsortImageName = []
for i in range(len(testallFruitsImageName)):
oneClass = testallFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
testallsortImageName.append(sortnrImageName)

testData = []
for i in range(len(testallsortImageName)):
one = []
for j in range(len(testallsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]+"\\" + testallsortImageName[i][j])
gray=color.rgb2gray(rgb)
dst=transform.resize(gray,(64,64))
one.append(dst)
testData.append(one)
print(np.shape(testData))

testLabelNum = []
for i in range(len(testData)):
for j in range(len(testData[i])):
testLabelNum.append(i)
imageGray = testData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum",testLabelNum)
print("图片处理完了")

import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

trainDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage")
trainDataList = []
for i in range(len(trainDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+trainDataDirList[i])
trainDataList.append(image)
trainLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum.npy")

testDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage")
testDataList = []
for i in range(len(testDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+testDataDirList[i])
testDataList.append(image)
testLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum.npy")

import tensorflow as tf
from random import shuffle

INPUT_NODE = 64*64
OUT_NODE = 77
IMAGE_SIZE = 64
NUM_CHANNELS = 1
NUM_LABELS = 77
#第一层卷积层的尺寸和深度
CONV1_DEEP = 64
CONV1_SIZE = 5
#第二层卷积层的尺寸和深度
CONV2_DEEP = 128
CONV2_SIZE = 5
#全连接层的节点数
FC_SIZE = 1024

def inference(input_tensor, train, regularizer):
#卷积
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
#池化
with tf.variable_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#卷积
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
#卷积向前学习
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
#池化
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer5-conv3'):
conv3_weights = tf.Variable(tf.random_normal([5,5,CONV2_DEEP,512],stddev=0.1),name='weight')
conv3_biases = tf.Variable(tf.random_normal([512]),name="bias")
#卷积向前学习
conv3 = tf.nn.conv2d(pool2,conv3_weights,strides=[1,1,1,1],padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3,conv3_biases))
#池化
with tf.variable_scope('layer6-pool3'):
pool3 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer7-conv4'):
conv4_weights = tf.Variable(tf.random_normal([5,5,512,64],stddev=0.1),name='weight')
conv4_biases = tf.Variable(tf.random_normal([64]),name="bias")
#卷积向前学习
conv4 = tf.nn.conv2d(pool3,conv4_weights,strides=[1,1,1,1],padding='SAME')
relu4 = tf.nn.relu(tf.nn.bias_add(conv4,conv4_biases))
#池化
with tf.variable_scope('layer7-pool4'):
pool4 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#变型
pool_shape = pool4.get_shape().as_list()
#计算最后一次池化后对象的体积(数据个数\节点数\像素个数)
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
#根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
reshaped = tf.reshape(pool4,[-1,nodes])

#全连接层
with tf.variable_scope('layer8-fc1'):
fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
#预测
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
if(train):
fc1 = tf.nn.dropout(fc1,0.5)
#全连接层
with tf.variable_scope('layer9-fc2'):
fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
#预测
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
if(train):
fc2 = tf.nn.dropout(fc2,0.5)
#全连接层
with tf.variable_scope('layer10-fc3'):
fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
#预测
logit = tf.matmul(fc2,fc3_weights)+fc3_biases
return logit

import keras
import time
from keras.utils import np_utils

X = np.vstack(trainDataList).reshape(-1, 64,64,1)
Y = np.vstack(trainLabelNum).reshape(-1, 1)
Xrandom = []
Yrandom = []
index = [i for i in range(len(X))]
shuffle(index)
for i in range(len(index)):
Xrandom.append(X[index[i]])
Yrandom.append(Y[index[i]])
np.save("E:\\Xrandom",Xrandom)
np.save("E:\\Xrandom",Yrandom)

X = Xrandom
Y = Yrandom
Y=keras.utils.to_categorical(Y,OUT_NODE)

batch_size = 200
n_classes=77
epochs=20#循环次数
learning_rate=1e-4
batch_num=int(np.shape(X)[0]/batch_size)
dropout=0.75

x=tf.placeholder(tf.float32,[None,64,64,1])
y=tf.placeholder(tf.float32,[None,n_classes])
# keep_prob = tf.placeholder(tf.float32)

pred=inference(x,1,"regularizer")

cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))

# 三种优化方法选择一个就可以
optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)
keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob")
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
# merged = tf.summary.merge_all()
init=tf.global_variables_initializer()
start_time = time.time()

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
for j in range(batch_num):
start = (j*batch_size)
end = start+batch_size
sess.run(optimizer, feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 0.5})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 1})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))

end_time = time.time()
print('运行时间:',(end_time-start_time))
print('Optimization Completed')

def gen_small_data(inputs,batch_size):
i=0
j = True
while j:
small_data=inputs[i:(batch_size+i)]
i+=batch_size
if len(small_data)!=0:
yield small_data
if len(small_data)==0:
j=False

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
x_=gen_small_data(X,batch_size)
y_=gen_small_data(Y,batch_size)
X = next(x_)
Y = next(y_)
sess.run(optimizer, feed_dict={x:X,y:Y})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X,y:Y})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc))

labelNameList = []
for i in range(len(labelList)):
labelNameList.append("label:"+labelList[i])
theFireImage = []
for i in range(len(allsortImageName)):
theFireImage.append(plt.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][4]))
gs = plt.GridSpec(11,7)
fig = plt.figure(figsize=(10,10))
imageIndex = 0
ax = plt.gca()
for i in range(11):
for j in range(7):
fi = fig.add_subplot(gs[i,j])
fi.imshow(theFireImage[imageIndex])
plt.xticks(())
plt.yticks(())
plt.axis('off')
plt.title(labelNameList[imageIndex],fontsize=7)
ax.set_xticks([])
ax.set_yticks([])
ax.spines['top'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_color('none')
imageIndex += 1
plt.show()

吴裕雄 python神经网络 水果图片识别(1)的更多相关文章

  1. 吴裕雄 python神经网络 水果图片识别(5)

    #-*- coding:utf-8 -*-### required libaraiedimport osimport matplotlib.image as imgimport matplotlib. ...

  2. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  3. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  4. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  5. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

随机推荐

  1. C# 正则表达式 判断各种字符串(如手机号)

    using System; using System.Text.RegularExpressions; namespace MetarCommonSupport { /// <summary&g ...

  2. MySQL 查看编码 排序规则

    查看数据库的排序规则 mysql> show variables like 'collation%'; +----------------------+-------------------+ ...

  3. [转]csharp:Microsoft.Ink 手写识别(HandWriting Recognition)

    原贴:http://www.cnblogs.com/geovindu/p/3702427.html 下載: //Microsoft Windows XP Tablet PC Edition 2005 ...

  4. fckeditor 配置

    因为下载下来的压缩包里面有包含很多在我们使用时,用不到的,不删除也行.看个人喜好下面以PHP为例,进行程序瘦身 删除所有”_”开头的文件和文件夹   删除FCKeditor的目录下:   fckedi ...

  5. vscode中使用Experimental Decorators报错

    在vscode中使用es7的新语法decorator会报错,如图: 这是错误来自与vscode的JS support,只要在项目根目录下创建一个jsconfig.json文件,添加如下内容: { &q ...

  6. Qt中路径问题小结

    转载:奋斗Andy 在做Qt项目的时候,我们难免遇到到文件路径问题. 如QFile file("text.txt")加载不成功.QPixmap("../text.png& ...

  7. canvas基础一

    使用HTML5中<canvas>元素可以在页面中设定一个区域,然后通过JavaScript动态地在这个区域中绘制图形,要在这块画布(canvas)上绘图,需要取得绘图上下文,而取得绘图上下 ...

  8. RegExp实例

    ECMAScript通过RegExp类型来支持正则表达式,常见的正则表达式为:var expression = /pattern / flags;其中的模式(pattern)部分可以使任何简单或复杂的 ...

  9. 关于clearfix和clear的研究

    今天领导跟我说到这个问题,我上网找了些资料,已转载一篇文章到本博客(后一篇),摘自百度文库. ps:还有一种写法就是: CSS代码: .clearfix:after { content: " ...

  10. PHP 弹出文件下载 原理 代码

    /** * @author      default7<default7@zbphp.com> * @description 演示PHP弹出下载的原理 * * @param $file_n ...