Hign-Speed Tracking with Kernelzied Correlation Filters
reference:Hign-Speed Tracking with Kernelzied Correlation Filters
questions:
The core componet of most modern trackers is a discriminative classifier, tasked with distingushing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies--any overlapping pixels are constrained to be the same.
solutions:
we proposed an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and compution by several orders of magnitude. Interestingly,
linear regression our formutlation=a correlation filter
which is used by some of the fastest competitive trackers.
for kernel regression,
kernel regression=a new kernelized correlation filter(KCF)
which unlike other kernel algorithms has the exact same complexity as its linear counterpart.
Building on ti ,we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter(DCT).
see, as the topic demonstrates--high-speed tracking, focus on storage and computation.
Hign-Speed Tracking with Kernelzied Correlation Filters的更多相关文章
- Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记
Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...
- KCF:High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析(一)。分享与转发请注明出处-作者:行于此路
High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析 基于核相关滤波器的高速目标跟踪方法,简称KCF 写在前面,之所以对这篇文章 ...
- High-Speed Tracking with Kernelized Correlation Filters
2015年的一篇论文,可参考:http://blog.csdn.net/carrierlxksuper/article/details/46461245. 另参考:http:// ...
- High-Speed Tracking with Kernelized Correlation Filters(二)
首先看看get_features函数. 首先判断是hog特征还是gray,分两种情况. 如果是hog特征,调用fhog函数,返回x,并将矩阵 ...
- correlation filters in object tracking
http://www.cnblogs.com/hanhuili/p/4266990.html Correlation Filter in Visual Tracking系列一:Visual Objec ...
- Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking---随笔
Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking DCF跟踪算法因边界效应,鲁棒性较差.SRD ...
- Multi-hierarchical Independent Correlation Filters for Visual Tracking(MFT)略读
作者写道: 有幸在本届的VOT 2018 主赛中,我们的参赛方案Multi-solution Fusion for Visual Tracking(MFT)获得第一名的成绩,通过结果来看,MFT无论在 ...
- correlation filters in object tracking2
http://www.cnblogs.com/hanhuili/p/4281077.html Correlation Filter in Visual Tracking系列二:Fast Visual ...
- call Kernelized Correlation Filters Tracker(Matab) in Qt(c++)
recently, i need call the KCF tracker in my graduation project. the KCF tracker is fast and best per ...
随机推荐
- python3.7 安装pyqt5
pip install pyqt5
- [原][OSG]整理osg渲染一帧的流程
参考:最长的一帧 先看下frame void ViewerBase::frame(double simulationTime) { advance(simulationTime);//记录仿真时间,帧 ...
- Java 注解的概念与种类
Java 注解的概念与种类 一,什么是注解 注解和XML文件都是常用的,对web项目进行配置性描述的方式. 举个最简单的例子,对于一个Servlet,比如LoginServlet,采用如下方式: @W ...
- 《剑指offer》第九题(用两个栈实现队列)
// 面试题:用两个栈实现队列 // 题目:用两个栈实现一个队列.队列的声明如下,请实现它的两个函数appendTail // 和deleteHead,分别完成在队列尾部插入结点和在队列头部删除结点的 ...
- [VIM插件]fedora22编译vim7.4对perl组件支持的问题
在fedora22下,重新编译安装vim7.4的时,在编译perl组件支持时,出现如下错误: /bin/perl -e 'unless ( $] >= 5.005 ) { for (qw(na ...
- Codeforces 821C - Okabe and Boxes
821C - Okabe and Boxes 思路:模拟.因为只需要比较栈顶和当前要删除的值就可以了,所以如果栈顶和当前要删除的值不同时,栈就可以清空了(因为下一次的栈顶不可能出现在前面那些值中). ...
- Java中泛型使用
Java中泛型使用 泛型作用: 泛型:集合类添加对象不用强转 反射机制:将泛型固定的类的所有方法和成员全部显示出来 核心代码: ArrayList<Ls> ff=new ArrayList ...
- android--------微信 Tinker 热修复 (三)
前面简单介绍了一下Tinker热修复的使用,包含debug和release,今天就来分享一下微信针对Tinker热修复提供的一个平台,TinkerPatch补丁管理后台. 1:什么是TinkerPat ...
- php--------删除一个路径下的所有文件夹和文件
php遍历一个文件夹内的所有文件和文件夹,并删除所有文件夹和子文件夹下的所有文件的代码,通过递归方式实现达到清空一个目录的效果,代码简单实用. 也适合在thinkphp中清理缓存,在thinkphp中 ...
- bzoj 1267 Kth Number I (点分治,堆)
超级钢琴的树上版本, 类似做法即可, 只不过区间转为dfs序了, 用点分求一下, 复杂度$O(nlog^2n)$ #include <iostream> #include <algo ...