第六章 图(d)深度优先搜索的更多相关文章

  1. 【算法导论】图的深度优先搜索遍历(DFS)

    关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...

  2. DS图遍历--深度优先搜索

    DS图遍历--深度优先搜索 题目描述 给出一个图的邻接矩阵,对图进行深度优先搜索,从顶点0开始 注意:图n个顶点编号从0到n-1 代码框架如下: 输入 第一行输入t,表示有t个测试实例 第二行输入n, ...

  3. 图的深度优先搜索dfs

    图的深度优先搜索: 1.将最初访问的顶点压入栈: 2.只要栈中仍有顶点,就循环进行下述操作: (1)访问栈顶部的顶点u: (2)从当前访问的顶点u 移动至顶点v 时,将v 压入栈.如果当前顶点u 不存 ...

  4. "《算法导论》之‘图’":深度优先搜索、宽度优先搜索(无向图、有向图)

    本文兼参考自<算法导论>及<算法>. 以前一直不能够理解深度优先搜索和广度优先搜索,总是很怕去碰它们,但经过阅读上边提到的两本书,豁然开朗,马上就能理解得更进一步. 下文将会用 ...

  5. 第六章 图(c)广度优先搜索

  6. 图的深度优先搜索(DFS)和广度优先搜索(BFS)算法

    深度优先(DFS) 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接 ...

  7. 【js数据结构】图的深度优先搜索与广度优先搜索

    图类的构建 function Graph(v) {this.vertices = v;this.edges = 0;this.adj = []; for (var i = 0; i < this ...

  8. 第六章 图(b1)邻接矩阵

  9. 第六章 图(a)概述

随机推荐

  1. [转]NSIS:使用SectionSetFlags根据不同环境自动勾选特定区段

    转自: http://www.flighty.cn/html/bushu/20140526_232.html   在微软SQL2000+SP4集成安装版安装包中可以根据目标操作系统自动勾选对应的版本, ...

  2. Storm存储结果至Redis

      原有的事务支持使用MemcachedState来进行,现在需要将其迁移至Redis,并且需要记录所有key值列表,因为在redis中虽然可以使用keys *操作,但不是被推荐的方式,所以把所有结果 ...

  3. Hive基础之Hive体系架构&运行模式&Hive与关系型数据的区别

    Hive架构 1)用户接口: CLI(hive shell):命令行工具:启动方式:hive 或者 hive --service cli ThriftServer:通过Thrift对外提供服务,默认端 ...

  4. 对抗样本攻防战,清华大学TSAIL团队再获CAAD攻防赛第一

    最近,在全球安全领域的殿堂级盛会 DEF CON 2018 上,GeekPwn 拉斯维加斯站举行了 CAAD CTF 邀请赛,六支由国内外顶级 AI 学者与研究院组成的队伍共同探讨以对抗训练为攻防手段 ...

  5. 使用promisify来流程化异步操作

    现代js包括nodejs中有很多函数都是异步执行的, 我们总是需要写一个回调函数并且作为最后以一个参数传入,而我希望的是能像写promise这样的回调 promise .then() .then() ...

  6. 关于json 转换BigDecimal精度丢失问题

    今天在转换一个关于金额字段发现一个关于json转换的bug  目前尚未深入观察 问题: 如果金钱为bigdecimal json转换后不会丢失精度 但是通过@responsebody 返回到前端后发现 ...

  7. 温故而知新-mysql的一些语法show,describe,explain,fulltext

    1 show show tables; 显示数据库的所有表 show databases; 显示所有数据库 show columns from table; 显示表的所有列 show grants f ...

  8. OpenCL 双调排序 CPU 版

    ▶ 学习了双调排序,参考(https://blog.csdn.net/xbinworld/article/details/76408595) ● 使用 CPU 排序的代码 #include <s ...

  9. LSTM(Long Short-Term Memory)长短期记忆网络

    1. 摘要 对于RNN解决了之前信息保存的问题,例如,对于阅读一篇文章,RNN网络可以借助前面提到的信息对当前的词进行判断和理解,这是传统的网络是不能做到的.但是,对于RNN网络存在长期依赖问题,比如 ...

  10. 机器学习入门-随机森林温度预测的案例 1.datetime.datetime.datetime(将字符串转为为日期格式) 2.pd.get_dummies(将文本标签转换为one-hot编码) 3.rf.feature_importances_(研究样本特征的重要性) 4.fig.autofmt_xdate(rotation=60) 对标签进行翻转

    在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features)  ...