hive元数据研究
hive的元数据存放在关系型数据库中,元数据中存储了hive中所有表格的信息,包括表格的名字,表格的字段,字段的类型,注释。这些信息分散的存放在各个表中,给定一个hive中的表格名字,查询这个表中含有的所有字段,使用如下的SQL语句:
mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dwd_medical_hospital_dd';
+-------+--------------------------------------+-------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+--------------------------------------+-------------+-----------+-------------+
| 603 | 地址 | address | string | 2 |
| 603 | 医院类型 | clean_type | string | 14 |
| 603 | 采集时间 | create_time | string | 10 |
| 603 | 所在大区 | extend_area | string | 13 |
| 603 | 所在城市 | extend_city | string | 11 |
| 603 | 所在省份 | extend_prov | string | 12 |
| 603 | 路线 | howtogo | string | 3 |
| 603 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 603 | 医院等级 | level | string | 4 |
| 603 | 医院名字 | name | string | 1 |
| 603 | 简介 | profiles | string | 7 |
| 603 | 区域ID/城市ID | prov_id | string | 5 |
| 603 | 资源配置量 | resouce | string | 8 |
| 603 | 电话 | telephone | string | 6 |
| 603 | 采集URL | url | string | 9 |
| 583 | 地址 | address | string | 2 |
| 583 | 医院类型 | clean_type | string | 14 |
| 583 | 采集时间 | create_time | string | 10 |
| 583 | 所在大区 | extend_area | string | 13 |
| 583 | 所在城市 | extend_city | string | 11 |
| 583 | 所在省份 | extend_prov | string | 12 |
| 583 | 路线 | howtogo | string | 3 |
| 583 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 583 | 医院等级 | level | string | 4 |
| 583 | 医院名字 | name | string | 1 |
| 583 | 简介 | profiles | string | 7 |
| 583 | 区域ID/城市ID | prov_id | string | 5 |
| 583 | 资源配置量 | resouce | string | 8 |
| 583 | 电话 | telephone | string | 6 |
| 583 | 采集URL | url | string | 9 |
+-------+--------------------------------------+-------------+-----------+-------------+
30 rows in set
mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dws_info_doctor_dd';
+-------+----------+----------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+----------+----------------+-----------+-------------+
| 673 | 年龄 | age | string | 3 |
| 673 | 科室ID | department_id | string | 10 |
| 673 | 从诊年限 | diagnosis_time | string | 6 |
| 673 | 履历 | experience | string | 8 |
| 673 | 擅长疾病 | good | string | 5 |
| 673 | NULL | hosp_id | string | 11 |
| 673 | 主键ID | id | string | 0 |
| 673 | 医生名称 | name | string | 1 |
| 673 | 门诊量 | outpatient_num | string | 7 |
| 673 | 医生职称 | position | string | 2 |
| 673 | 评分 | score | string | 9 |
| 673 | 性别 | sex | string | 4 |
| 758 | 年龄 | age | string | 3 |
| 758 | 科室ID | department_id | string | 10 |
| 758 | 从诊年限 | diagnosis_time | string | 6 |
| 758 | 履历 | experience | string | 8 |
| 758 | 擅长疾病 | good | string | 5 |
| 758 | NULL | hosp_id | string | 11 |
| 758 | 主键ID | id | string | 0 |
| 758 | 医生名称 | name | string | 1 |
| 758 | 门诊量 | outpatient_num | string | 7 |
| 758 | 医生职称 | position | string | 2 |
| 758 | 评分 | score | string | 9 |
| 758 | 性别 | sex | string | 4 |
| 732 | 年龄 | age | string | 3 |
| 732 | 科室ID | department_id | string | 10 |
| 732 | 从诊年限 | diagnosis_time | string | 6 |
| 732 | 履历 | experience | string | 8 |
| 732 | 擅长疾病 | good | string | 5 |
| 732 | 主键ID | id | string | 0 |
| 732 | 医生名称 | name | string | 1 |
| 732 | 门诊量 | outpatient_num | string | 7 |
| 732 | 医生职称 | position | string | 2 |
| 732 | 评分 | score | string | 9 |
| 732 | 性别 | sex | string | 4 |
+-------+----------+----------------+-----------+-------------+
35 rows in set
hive元数据中相关的表格关系如下:
hive元数据研究的更多相关文章
- hive 元数据解析
在使用Hive进行开发时,我们往往需要获得一个已存在hive表的建表语句(DDL),然而hive本身并没有提供这样一个工具. 要想还原建表DDL就必须从元数据入手,我们知道,hive的元数据并不存放在 ...
- 如何监听对 HIVE 元数据的操作
目录 简介 HIVE 基本操作 获取 HIVE 源码 编译 HIVE 源码 启动 HIVE 停止 HIVE 监听对 HIVE 元数据的操作 参考文档 简介 公司有个元数据管理平台,会定期同步 HIVE ...
- spark on yarn模式下配置spark-sql访问hive元数据
spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive ...
- Hive元数据启动失败,端口被占用
org.apache.thrift.transport.TTransportException: Could not create ServerSocket on address 0.0.0.0/0. ...
- Hive实现自增序列及常见的Hive元数据问题处理
Hive实现自增序列 在利用数据仓库进行数据处理时,通常有这样一个业务场景,为一个Hive表新增一列自增字段(比如事实表和维度表之间的"代理主键").虽然Hive不像RDBMS如m ...
- Hive——元数据表含义
Hive--元数据表含义 1.VERSION -- 查询版本信息 Field Type Comment VER_ID bigint(20) ID主键 SCHEMA_VERSION va ...
- 大数据学习(11)—— Hive元数据服务模式搭建
这一篇介绍Hive的安装及操作.版本是Hive3.1.2. 调整部署节点 在Hadoop篇里,我用了5台虚拟机来搭建集群,但是我的电脑只有8G内存,虚拟机启动之后卡到没法操作,把自己坑惨了. Hive ...
- 再谈Hive元数据如hive_metadata与Linux里MySQL的深入区别(图文详解)
不多说,直接上干货! [bigdata@s201 conf]$ vim hive-site.xml [bigdata@s201 conf]$ pwd /soft/hive/conf [bigdata@ ...
- Hive元数据找回
如果不小心删除了了hive的元数据文件(/user/hive/warehouse),只要先前core-site.xml文件中设置了fs.trash.interval属性就可以找回.hdfs会为用户创建 ...
随机推荐
- Android StageFrightMediaScanner源码解析
1. 简单介绍 Android中在StageFrightMediaScanner实现对多媒体文件的处理. 此外在StageFrightMediaScanner定义了支持的多媒体文件类型. 文件位置 f ...
- 比较typeof与instanceof?
相同点:JavaScript 中 typeof 和 instanceof 常用来判断一个变量是否为空,或者是什么类型的. typeof的定义和用法:返回值是一个字符串,用来说明变量的数据类型. 细节: ...
- Docker 命令导图
- JavaWeb应用项目部署到云ubuntu
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6383068.html 在前面的博文中,我们已经在云主机ubuntu上搭建好jdk.tomcat以及mysql了 ...
- sqrtx-开平方
Implementint sqrt(int x). Compute and return the square root of x. 逐次逼近 class Solution { public: int ...
- Knockout学习之文本和外观绑定器
文本和外观绑定器 “visible”绑定 该绑定主要用来让我们通过监控属性可以控制html文档的显示,只要绑定的监控属性为false.0.null或者undefined则隐藏该标签,否则显示.比如下面 ...
- V-rep学习笔记:机器人模型创建3—搭建动力学模型
接着之前写的V-rep学习笔记:机器人模型创建2—添加关节继续机器人创建流程.如果已经添加好关节,那么就可以进入流程的最后一步:搭建层次结构模型和模型定义(build the model hierar ...
- C#程序实现窗体的最大化/最小化
C#程序实现窗体的最大化/最小化 http://blog.csdn.net/jiangqin115/article/details/41251215 private void button1_Clic ...
- 生命周期方法调用,以及在onStop()方法中处理草稿信息
生命周期方法调用顺序 1. 从会话列表界面跳转到信息列表界面. 07-17 17:29:18.718: I/txrjsms(19370): MessageListActivity.onCreate 0 ...
- sqlserver查询数据表中每个类别最新的一条记录
表tariff_info, 原始数据: 想要的结果:以start_time时间倒序排序, 以code分类, 查询每一类最新的一条记录 sql: SELECT a.* FROM TARIFF_INFO ...