tensorflow 卷积/反卷积-池化/反池化操作详解
- Plese see this answer for a detailed example of how
tf.nn.conv2d_backprop_inputandtf.nn.conv2d_backprop_filterin an example.
In tf.nn, there are 4 closely related 2d conv functions:
tf.nn.conv2dtf.nn.conv2d_backprop_filtertf.nn.conv2d_backprop_inputtf.nn.conv2d_transpose
def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None):
r"""Computes a 2-D convolution given 4-D `input` and `filter` tensors. Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
and a filter / kernel tensor of shape
`[filter_height, filter_width, in_channels, out_channels]`, this op
performs the following: 1. Flattens the filter to a 2-D matrix with shape
`[filter_height * filter_width * in_channels, output_channels]`.
2. Extracts image patches from the input tensor to form a *virtual*
tensor of shape `[batch, out_height, out_width,
filter_height * filter_width * in_channels]`.
3. For each patch, right-multiplies the filter matrix and the image patch
vector. In detail, with the default NHWC format, output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k] Must have `strides[0] = strides[3] = 1`. For the most common case of the same
horizontal and vertices strides, `strides = [1, stride, stride, 1]`.
Given out = conv2d(x, w) and the output gradient d_out:
- Use
tf.nn.conv2d_backprop_filterto compute the filter gradientd_w - Use
tf.nn.conv2d_backprop_inputto compute the filter gradientd_x tf.nn.conv2d_backprop_inputcan be implemented bytf.nn.conv2d_transpose- All 4 functions above can be implemented by
tf.nn.conv2d - Actually, use TF's autodiff is the fastest way to compute gradients
Long Answer
Now, let's give an actual working code example of how to use the 4 functions above to compute d_x and d_w given d_out. This shows how conv2d, conv2d_backprop_filter, conv2d_backprop_input, and conv2d_transpose are related to each other. Please find the full scripts here.
Computing d_x in 4 different ways:
# Method 1: TF's autodiff
d_x = tf.gradients(f, x)[0]
# Method 2: manually using conv2d
d_x_manual = tf.nn.conv2d(input=tf_pad_to_full_conv2d(d_out, w_size),
filter=tf_rot180(w),
strides=strides,
padding='VALID')
# Method 3: conv2d_backprop_input
d_x_backprop_input = tf.nn.conv2d_backprop_input(input_sizes=x_shape,
filter=w,
out_backprop=d_out,
strides=strides,
padding='VALID')
# Method 4: conv2d_transpose
d_x_transpose = tf.nn.conv2d_transpose(value=d_out,
filter=w,
output_shape=x_shape,
strides=strides,
padding='VALID')
Computing d_w in 3 different ways:
# Method 1: TF's autodiff
d_w = tf.gradients(f, w)[0]
# Method 2: manually using conv2d
d_w_manual = tf_NHWC_to_HWIO(tf.nn.conv2d(input=x,
filter=tf_NHWC_to_HWIO(d_out),
strides=strides,
padding='VALID'))
# Method 3: conv2d_backprop_filter
d_w_backprop_filter = tf.nn.conv2d_backprop_filter(input=x,
filter_sizes=w_shape,
out_backprop=d_out,
strides=strides,
padding='VALID')
Please see the full scripts for the implementation of tf_rot180, tf_pad_to_full_conv2d, tf_NHWC_to_HWIO. In the scripts, we check that the final output values of different methods are the same; a numpy implementation is also available.
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
- http://www.cnblogs.com/pinard/p/6494810.html :卷积神经网络(CNN)反向传播算法
- http://blog.csdn.net/yunpiao123456/article/details/52437794
tensorflow 卷积/反卷积-池化/反池化操作详解的更多相关文章
- 超详细的Tensorflow模型的保存和加载(理论与实战详解)
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...
- jdbc连接池中c3p0的配置文件的详解以及在在java中如何使用
<c3p0-config> <!-- 默认配置,如果没有指定则使用这个配置 --> <default-config> <property name=" ...
- opencv-python图像二值化函数cv2.threshold函数详解及参数cv2.THRESH_OTSU使用
cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(i ...
- CentOS Minimal版最小化安装后VMware联网详解
最近想搞个mailman邮件列表,又不想在我常用的CentOS 6.4上做实验,怕破坏了环境,于是就想装个试验机,又嫌它占空间太大,于是找了半天发现CentOS 6.0的minimal版本最适合了,装 ...
- Windows里安装wireshark或者ethereal工具(包括汉化破解)(图文详解)
不多说,直接上干货! https://www.wireshark.org/download.html 我这里,读取的是,来自于https://www.ll.mit.edu/ideval/data/19 ...
- Java学习笔记 线程池使用及详解
有点笨,参考了好几篇大佬们写的文章才整理出来的笔记.... 字面意思上解释,线程池就是装有线程的池,我们可以把要执行的多线程交给线程池来处理,和连接池的概念一样,通过维护一定数量的线程池来达到多个线程 ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 『TensorFlow』卷积层、池化层详解
一.前向计算和反向传播数学过程讲解
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
随机推荐
- Xamarin 2017.11.9更新
Xamarin 2017.11.9更新 本次更新主要针对Xamarin.iOS,适配了iOS 11.1和Xcode 9.1.Visual Studio 2017升级到15.4.3获得新功能.Visu ...
- iOS 11开发教程(十三)iOS11应用编辑界面添加视图
iOS 11开发教程(十三)iOS11应用编辑界面添加视图 在iOS中添加视图的方式有两种:一种是使用编辑界面添加视图:另一种是使用代码添加视图.以下是这两个方式的详细介绍. 1.编辑界面添加视图 使 ...
- Go语言笔记:struct结构遍历
package main import ( "fmt" "reflect" ) type User struct { Id int Name string // ...
- 查看APP的下载量
开发者账号登陆后:→用户中心→iTunes Connect→Sales Trend
- QQ和微信一键加群加好友代码
QQ和微信一键加群加好友链接代码实现. 1.QQ加群加好友链接(借助腾讯QQ群推广链接和加好友链接实现) (1).加群技术链接: http://qun.qq.com/join.html (2).加好友 ...
- 浅尝一致性Hash原理
写在前面 在解决分布式系统中负载均衡的问题时候可以使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡的作用.但是普通的余数ha ...
- 手机浏览器跳转APP
背景 对于APP来说,回流分享页是最好的最便宜的也是最病毒式的拉新方式.让新用户去下载APP是重要的.对老用户来说,可以直接调起APP也是提升用户体验和让用户有侵入式体验的重要手段.所以我们一起来看看 ...
- Handlebars.js 预编译(转)
Handlebars.js 官网上对预编译1是这样说的: 你需要安装 Node.js 你需要在全局环境中,通过 Npm 安装 handlebars 包 然后你就可以通过命令预编译你的 handleba ...
- 关于.net core程序的部署
最近发布.net core程序的时候,发现它是可以独立部署的,它支持如下两种部署方式: 依赖框架的部署FDD.只发布我们的程序,运行前用户需要手动安装.net core runtime. 独立部署SC ...
- Android app开发中用户协议(使用条款)文字自己主动换行
用户协议(使用条款)文字自己主动换行处理 转载请注明出处:http://blog.csdn.net/u012301841/article/details/46648821 我们在开发app的时候.常常 ...