【CF724F】Uniformly Branched Trees

题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目。

$n\le 1000,d\le 10$。

题解:先考虑有根树的版本。我们用$DP(n,m,k)$表示n个点,其中根的度数为m,其余点度数为d,根的最大的儿子的子树不能超过k的方案数。转移时我们可以枚举有多少个子树大小为k的。假如有i个,则贡献为:$DP(n-ik,m-i,k-1)\times{{DP(k,d-1,k-1)+i-1} \choose{i}}$,采用记忆化搜索是一个非常优秀的方法。

如果是无根树呢?如果有一个点为重心,则我们令重心为根即可。如果有两个重心,我们枚举其中一个,用组合数算一算即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
int n,m;
ll P;
ll ine[1010];
int f[1010][11][1010];
ll DP(int n,int d,int k)
{
k=min(k,n-1);
if(f[n][d][k]!=-1) return f[n][d][k];
if((n==1&&d==m-1)||(n==1&&!d)) return 1;
if(n==1||!k) return 0;
int j;
ll ret=DP(n,d,k-1),t=DP(k,m-1,k),tmp=1;
for(j=1;j*k<n&&j<=d;j++)
{
tmp=tmp*(t+j-1)%P*ine[j]%P;
ret=(ret+tmp*DP(n-k*j,d-j,k-1))%P;
}
return f[n][d][k]=ret;
}
int main()
{
scanf("%d%d%lld",&n,&m,&P);
if(n==1||n==2)
{
puts("1");
return 0;
}
if((n-2)%(m-1)!=0)
{
puts("0");
return 0;
}
int i;
ine[0]=ine[1]=1;
for(i=2;i<=n;i++) ine[i]=P-(P/i)*ine[P%i]%P;
memset(f,-1,sizeof(f));
ll ans=DP(n,m,(n-1)/2);
if(!(n&1))
{
ll t=DP(n/2,m-1,n/2-1);
ans=(ans+t*(t+1)/2)%P;
}
printf("%lld",ans);
return 0;
}

【CF724F】Uniformly Branched Trees 动态规划的更多相关文章

  1. CF724F Uniformly Branched Trees

    CF724F Uniformly Branched Trees 有根树可以统计.无根树难以统计.因为可以换根. 所以不让换根:只要两个无根树在重心位置不同构,就一定不同构 每个本质不同的树在重心位置统 ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) F - Uniformly Branched Trees 无根树->有根树+dp

    F - Uniformly Branched Trees #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  3. 【CF724F】Uniformly Branched Trees

    题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. n≤1000,d≤10n≤1000,d≤10. 题解: 这题真的是一道非常好的题 首先考虑有根树 定义f[i][j][k]表示i个 ...

  4. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  5. LEETCODE —— Unique Binary Search Trees [动态规划]

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  6. Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划

    C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...

  7. 高考集训讲课(To 高一)

    高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...

  8. 『正睿OI 2019SC Day6』

    动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...

  9. Todo List

    Contest 11.13 2016ACM/ICPC亚洲区青岛站(5/13, solved 7/13) Training 11.06 2016年中国大学生程序设计竞赛(合肥)(solved 6/10) ...

随机推荐

  1. [Learn AF3]第六章 App Framework 3.0中的内置矢量图标

    AF3的内置矢量图标 介绍:要使用af3中的图标,必须首先引入icon.css,由于文件中已经内置了字体文件数据,因此不需要引入字体文件支持. <link rel="styleshee ...

  2. 从debian9、ubuntu18.04的deb包依赖来看,似乎不是那么好!!

    i386体系的依赖.典型的libuuid1依赖问题,需要downgrade保持版本一致! amd64的rpm依赖低版本的perl-base,需要downgrade保持版本一致!

  3. DPSR随手笔记

    降质模型 MAP:

  4. PHP从数组中找到指定元素的位置

    群里有人问,有个数组五个元素 分为1到5  现在要求 循环找出3元素的索引,怎么做性能才是最高. 我不知道哪个性能最高,但是我想提出可以用多种方式进行查找,然后进行比较选择. 我想,最简单最基础的 应 ...

  5. C#中的Abstract、Virtual、Interface理解

    容易混淆是必须的,都是与继承有关系,并且涉及到override的使用 一.Virtual方法(虚方法) virtual 关键字用于在基类中修饰方法.virtual的使用会有两种情况: 情况1:在基类中 ...

  6. numpy, pandas, matplotlib等常用库的学习手册

    pandas介绍: 待续 参考资料: 中文:https://www.cnblogs.com/skying555/p/5914391.html 英文:http://www.datadependence. ...

  7. ArcGIS应用

    1.ArcGIS Server发布资源报错:网络资源问题 有可能是跟网络相关的服务没有开启,开启相关服务器后有可能可以解决此问题. 还有可能通过此法解决:开始--控制面板--网络和共享中心--高级共享 ...

  8. jquery 动态展示查询条件

    <table class="queryTable" width="100%" > <tr> <td class="que ...

  9. vc2015编译paho.mqtt.c-1.1.0

    vc2015打开“\paho.mqtt.c-1.1.0\Windows Build\Paho C MQTT APIs.sln” 将文件“\paho.mqtt.c-1.1.0\src\VersionIn ...

  10. fastcgi协议之一:定义

    参考 深入理解fastcgi协议以及在php中的实现 https://mengkang.net/668.html fastcgi协议规范内容 http://andylin02.iteye.com/bl ...