【CF724F】Uniformly Branched Trees

题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目。

$n\le 1000,d\le 10$。

题解:先考虑有根树的版本。我们用$DP(n,m,k)$表示n个点,其中根的度数为m,其余点度数为d,根的最大的儿子的子树不能超过k的方案数。转移时我们可以枚举有多少个子树大小为k的。假如有i个,则贡献为:$DP(n-ik,m-i,k-1)\times{{DP(k,d-1,k-1)+i-1} \choose{i}}$,采用记忆化搜索是一个非常优秀的方法。

如果是无根树呢?如果有一个点为重心,则我们令重心为根即可。如果有两个重心,我们枚举其中一个,用组合数算一算即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
int n,m;
ll P;
ll ine[1010];
int f[1010][11][1010];
ll DP(int n,int d,int k)
{
k=min(k,n-1);
if(f[n][d][k]!=-1) return f[n][d][k];
if((n==1&&d==m-1)||(n==1&&!d)) return 1;
if(n==1||!k) return 0;
int j;
ll ret=DP(n,d,k-1),t=DP(k,m-1,k),tmp=1;
for(j=1;j*k<n&&j<=d;j++)
{
tmp=tmp*(t+j-1)%P*ine[j]%P;
ret=(ret+tmp*DP(n-k*j,d-j,k-1))%P;
}
return f[n][d][k]=ret;
}
int main()
{
scanf("%d%d%lld",&n,&m,&P);
if(n==1||n==2)
{
puts("1");
return 0;
}
if((n-2)%(m-1)!=0)
{
puts("0");
return 0;
}
int i;
ine[0]=ine[1]=1;
for(i=2;i<=n;i++) ine[i]=P-(P/i)*ine[P%i]%P;
memset(f,-1,sizeof(f));
ll ans=DP(n,m,(n-1)/2);
if(!(n&1))
{
ll t=DP(n/2,m-1,n/2-1);
ans=(ans+t*(t+1)/2)%P;
}
printf("%lld",ans);
return 0;
}

【CF724F】Uniformly Branched Trees 动态规划的更多相关文章

  1. CF724F Uniformly Branched Trees

    CF724F Uniformly Branched Trees 有根树可以统计.无根树难以统计.因为可以换根. 所以不让换根:只要两个无根树在重心位置不同构,就一定不同构 每个本质不同的树在重心位置统 ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) F - Uniformly Branched Trees 无根树->有根树+dp

    F - Uniformly Branched Trees #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  3. 【CF724F】Uniformly Branched Trees

    题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. n≤1000,d≤10n≤1000,d≤10. 题解: 这题真的是一道非常好的题 首先考虑有根树 定义f[i][j][k]表示i个 ...

  4. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  5. LEETCODE —— Unique Binary Search Trees [动态规划]

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  6. Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划

    C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...

  7. 高考集训讲课(To 高一)

    高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...

  8. 『正睿OI 2019SC Day6』

    动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...

  9. Todo List

    Contest 11.13 2016ACM/ICPC亚洲区青岛站(5/13, solved 7/13) Training 11.06 2016年中国大学生程序设计竞赛(合肥)(solved 6/10) ...

随机推荐

  1. C# WORD操作实现代码(转载)

    在当前项目开发过程中,客户有根据数据库数据生成WORD文档的需求,在和同事沟通的过程中,找到了两个解决方案 1.先通过程序生成报表样式的HTML页面,然后修改HTML页面的后缀名为DOC. 2.定制W ...

  2. 安装vmware vCenter Appliance

    vcenter appliance是一个vmware配置好的基于suse系统的vcenter的all in one式的虚拟机,比安装基于windows的vcenter服务省事多了,所以我选择部署vCe ...

  3. 内存管理 初始化(六)vmalloc_init 及 ioremap

    是不是我错了,本想这个函数会如网上所说将进行非连续内存管理的初始化,但是对于2.6.34的ARM架构而言,该函数实际完成的业务非常少. 内存管理的初始化读到此处,我感觉原有的认识存在很大缺陷: (1) ...

  4. PDCA 价值所在

    企业IT服务管理实施 不提倡一步到位 对企业IT部门来说,实施ITIL Service Support(服务支持)的意义在于清晰梳理日常IT运维管理过程中遇到的各种各样的事,使IT运维过程变得有序连贯 ...

  5. JointJS绘制流程图

    摘要: JointJS是一个javascript图表库.你可以使用它制作静态或者动态的图表.关系表.流程图. 效果图:

  6. MTK 时区修改

    1.修改packages/apps/Settings/res/xml-xx-xx/timezones.xml (xx-xx表示不同的语言和区域),添加下面的内容:     <!-- timezo ...

  7. Apache双机热备

    部署方案 1.1 方案设计 1.2 方案描述 如上图所示,我们要有三个可用的IP地址(切记不能与网络中其他机器IP重复),针对我使用的三个IP地址做如下说明: 10.16.252.10 //这个IP地 ...

  8. python运行显示编码错误

    python中运行显示编码错误一般有2种原因: 编码与译码的方式不一致 在编写Python时,当使用中文输出或注释时运行脚本,会提示错误信息: SyntaxError: Non-ASCII chara ...

  9. 绕过D盾的一句话

    一个很简单的一个技巧,作个笔记,可以绕过D盾检测. 新建test1.php <?php eval($_POST[g]); ?> 新建test2.php <?php $a=" ...

  10. map 集合的遍历

    List<Map<String,Object>> autoReplyList= wechatService.queryAutoReplyByOrg(orgId); for(Ma ...