传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类。本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的。希望你看完这篇文章可以最为快速的开始你的学习任务。

1. 获取数据

1.1 导入sklearn数据集

  sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也可以加深你对理论知识的理解和把握。(这一步我也亟需加强,一起加油!^-^)

首先呢,要想使用sklearn中的数据集,必须导入datasets模块:

from sklearn import datasets

下图中包含了大部分sklearn中数据集,调用方式也在图中给出,这里我们拿iris的数据来举个例子:

iris = datasets.load_iris() # 导入数据集
X = iris.data # 获得其特征向量
y = iris.target # 获得样本label

1.2 创建数据集

  你除了可以使用sklearn自带的数据集,还可以自己去创建训练样本,具体用法参见《Dataset loading utilities》,这里我们简单介绍一些,sklearn中的samples generator包含的大量创建样本数据的方法:

下面我们拿分类问题的样本生成器举例子:

 
from sklearn.datasets.samples_generator import make_classification

X, y = make_classification(n_samples=6, n_features=5, n_informative=2,
n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0,
random_state=20) # n_samples:指定样本数
# n_features:指定特征数
# n_classes:指定几分类
# random_state:随机种子,使得随机状可重
 
 
>>> for x_,y_ in zip(X,y):
print(y_,end=': ')
print(x_) 0: [-0.6600737 -0.0558978 0.82286793 1.1003977 -0.93493796]
1: [ 0.4113583 0.06249216 -0.90760075 -1.41296696 2.059838 ]
1: [ 1.52452016 -0.01867812 0.20900899 1.34422289 -1.61299022]
0: [-1.25725859 0.02347952 -0.28764782 -1.32091378 -0.88549315]
0: [-3.28323172 0.03899168 -0.43251277 -2.86249859 -1.10457948]
1: [ 1.68841011 0.06754955 -1.02805579 -0.83132182 0.93286635]
 

2. 数据预处理

  数据预处理阶段是机器学习中不可缺少的一环,它会使得数据更加有效的被模型或者评估器识别。下面我们来看一下sklearn中有哪些平时我们常用的函数:

from sklearn import preprocessing

2.1 数据归一化

  为了使得训练数据的标准化规则与测试数据的标准化规则同步,preprocessing中提供了很多Scaler:

 
data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data) # 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来
 

2.2 正则化(normalize

  当你想要计算两个样本的相似度时必不可少的一个操作,就是正则化。其思想是:首先求出样本的p-范数,然后该样本的所有元素都要除以该范数,这样最终使得每个样本的范数都为1。

 
>>> X = [[ 1., -1.,  2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
 

2.3 one-hot编码

  one-hot编码是一种对离散特征值的编码方式,在LR模型中常用到,用于给线性模型增加非线性能力。

data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()

3. 数据集拆分

  在得到训练数据集时,通常我们经常会把训练数据集进一步拆分成训练集和验证集,这样有助于我们模型参数的选取。

 
# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签 test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本 train_size: 同test_size random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True) 返回
---
分割后的列表,长度=2*len(arrays),
  (train-test split)
"""
 

4. 定义模型

  在这一步我们首先要分析自己数据的类型,搞清出你要用什么模型来做,然后我们就可以在sklearn中定义模型了。sklearn为所有模型提供了非常相似的接口,这样使得我们可以更加快速的熟悉所有模型的用法。在这之前我们先来看看模型的常用属性和功能:

 
# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test) # 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc
 

4.1 线性回归

 
from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False,
copy_X=True, n_jobs=1)
"""
参数
---
fit_intercept:是否计算截距。False-模型没有截距
normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
n_jobs:指定线程数
"""
 

4.2 逻辑回归LR

 
from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’,
verbose=0, warm_start=False, n_jobs=1) """参数
---
penalty:使用指定正则化项(默认:l2)
dual: n_samples > n_features取False(默认)
C:正则化强度的反,值越小正则化强度越大
n_jobs: 指定线程数
random_state:随机数生成器
fit_intercept: 是否需要常量
"""
 

4.3 朴素贝叶斯算法NB

 
from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
alpha:平滑参数
fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""
 

4.4 决策树DT

 
from sklearn import tree
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort=False)
"""参数
---
criterion :特征选择准则gini/entropy
max_depth:树的最大深度,None-尽量下分
min_samples_split:分裂内部节点,所需要的最小样本树
min_samples_leaf:叶子节点所需要的最小样本数
max_features: 寻找最优分割点时的最大特征数
max_leaf_nodes:优先增长到最大叶子节点数
min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""
 

4.5 支持向量机SVM

 
from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""参数
---
C:误差项的惩罚参数C
gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""
 

4.6 k近邻算法KNN

 
from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
n_neighbors: 使用邻居的数目
n_jobs:并行任务数
"""
 

4.7 多层感知机(神经网络)

 
from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
hidden_layer_sizes: 元祖
activation:激活函数
solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
alpha:L2惩罚(正则化项)参数。
"""
 

5. 模型评估与选择篇

5.1 交叉验证

 
from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
model:拟合数据的模型
cv : k-fold
scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、'neg_log_loss'等等
"""
 

5.2 检验曲线

  使用检验曲线,我们可以更加方便的改变模型参数,获取模型表现。

from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
model:用于fit和predict的对象
X, y: 训练集的特征和标签
param_name:将被改变的参数的名字
param_range: 参数的改变范围
cv:k-fold 返回值
---
train_score: 训练集得分(array)
test_score: 验证集得分(array)
"""

例子

6. 保存模型

  最后,我们可以将我们训练好的model保存到本地,或者放到线上供用户使用,那么如何保存训练好的model呢?主要有下面两种方式:

6.1 保存为pickle文件

import pickle

# 保存模型
with open('model.pickle', 'wb') as f:
pickle.dump(model, f) # 读取模型
with open('model.pickle', 'rb') as f:
model = pickle.load(f)
model.predict(X_test)
 

6.2 sklearn自带方法joblib

from sklearn.externals import joblib

# 保存模型
joblib.dump(model, 'model.pickle') #载入模型
model = joblib.load('model.pickle')

sklearn的快速使用的更多相关文章

  1. 机器学习sklearn的快速使用--周振洋

    ML神器:sklearn的快速使用 传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统 ...

  2. ML神器:sklearn的快速使用

    传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都 ...

  3. 【机器学习_9】sklearn

    背景 机器学习的重头戏就在sklearn,里面包含各种机器学习算法.希望尽量通过便易上手的方式掌握这个库. 资料 官网--随时查 https://scikit-learn.org/stable/ sk ...

  4. python常用库 - NumPy 和 sklearn入门

    Numpy 和 scikit-learn 都是python常用的第三方库.numpy库可以用来存储和处理大型矩阵,并且在一定程度上弥补了python在运算效率上的不足,正是因为numpy的存在使得py ...

  5. Python机器学习笔记:sklearn库的学习

    网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...

  6. 机器学习实战 | SKLearn最全应用指南

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...

  7. sklearn 快速入门教程

    1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也 ...

  8. [AI]SKLearn章1 快速入门

    SciKit learn的简称是SKlearn,是一个python库,专门用于机器学习的模块. SKlearn包含的机器学习方式: 分类,回归,无监督,数据降维,数据预处理等等,包含了常见的大部分机器 ...

  9. sklearn快速入门

    原创博文,转载请注明出处. (为了节约空间,打印结果常用"..."表示省略) 一.加载数据集 1. 加载sklearn自带的数据集 scikit-learn有一些自带的标准数据集, ...

随机推荐

  1. QT 实现QGraphicsProxyWidget对象可选择或移动(item管理实现)

    上篇博文<QT QGraphicsProxyWidget对象可选择或移动的一些tricks>介绍了实现QT QGraphicsProxyWidget对象可选择或移动的一些小的第三方技巧,但 ...

  2. linux 中搜索命令的对比

    1.find find是最常用和最强大的查找命令.它能做到实时查找,精确查找,但速度慢. find的使用格式如下: #find [指定目录] [指定条件] [指定动作] 指定目录:是指所要搜索的目录和 ...

  3. linux alias使用

    安装一些软件 python redis mysql jdk,都需要添加环境变量,一个路径添加到了环境变量,就可以直接在linux控制台输入  xx命令. 否则不添加环境变量,使用xx就会提示找不到命令 ...

  4. c#系统消息类封装

    今天封装了一个返回json的消息类 using System; using System.Collections.Generic; using System.Linq; using System.Te ...

  5. ios学习之UIWebView网页视图调整

    //先来一个可行的小Demo程序:结合searchBar的google搜索 #import <UIKit/UIKit.h> @interface ViewController : UIVi ...

  6. Greenplum-cc-web安装

    第一章 文档概述 1. 本安装手册描述适用于Greenplum4.0以上版本的安装Greenplum-cc-web操作 第二章 安装介质 针对Greenplum版本下载对应Greenplum-cc-w ...

  7. Install VMware Workstation as a Service

    Under default conditions, VMware Workstation does not support the ability to run virtual machines as ...

  8. Linux init 命令

    init命令用于切换到指定的运行级别,用法如下: [root@localhost ~]# init //关机 [root@localhost ~]# init //切换到单用户模式/救援模式 [roo ...

  9. Dictionary的应用

    在C#中,Dictionary提供快速的基于兼职的元素查找.他的结构是这样的:Dictionary<[key], [value]> ,当你有很多元素的时候可以使用它.它包含在System. ...

  10. Kafka一些常见资源汇总

    终于下定决心写一点普及类的东西.很多同学对Kafka的使用很感兴趣.如果你想参与到Kafka的项目开发中,很多资源是你必须要提前准备好的.本文罗列了一些常用的Kafka资源,希望对这些develope ...