【POJ2409】Let it Bead

题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的。求不同构的环的个数。

$n,m$很小就是了。

题解:在旋转$i$次后,循环节的个数显然是$gcd(i,n)$。

如果考虑翻转,我们将点从$0$到$n-1$标号,令其先以0到圆心的连线为对称轴翻转,再旋转i次,则原来编号为x的会变成$n-x+i\ \mathrm{mod}\ n$,令$n-x+i=x\ \mathrm{mod}\ n$,则$2x=i$或$2x=n+i$。

分奇偶性讨论一下循环节的个数即可。

最后套用Pólya定理。

其实n=2的情况是算重了的,不过你会发现每种情况都恰好被算了两次,所以就不用管了。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
int n,m;
ll ans;
ll pw[35];
int gcd(int a,int b)
{
return !b?a:gcd(b,a%b);
}
int main()
{
while(1)
{
scanf("%d%d",&m,&n);
if(!n&&!m) return 0;
int i;
for(pw[0]=i=1;i<=n;i++) pw[i]=pw[i-1]*m;
for(ans=i=0;i<n;i++)
{
ans+=pw[gcd(n,i)];
if(n&1) ans+=pw[(n+1)>>1];
else ans+=pw[(n>>1)+!(i&1)];
}
printf("%lld\n",ans/2/n);
}
}

【POJ2409】Let it Bead Pólya定理的更多相关文章

  1. POJ2409 Let it Bead(Polya定理)

    Let it Bead Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6443   Accepted: 4315 Descr ...

  2. 置换群 Burnside引理 Pólya定理(Polya)

    置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|= ...

  3. 【BZOJ1478】Sgu282 Isomorphism Pólya定理神题

    [BZOJ1478]Sgu282 Isomorphism 题意:用$m$种颜色去染一张$n$个点的完全图,如果一个图可以通过节点重新标号变成另外一个图,则称这两个图是相同的.问不同的染色方案数.答案对 ...

  4. 【POJ2154】Color Pólya定理+欧拉函数

    [POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...

  5. 数学:Burnside引理与Pólya定理

    这个计数定理在考虑对称的计数中非常有用 先给出这个定理的描述,虽然看不太懂: 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动 ...

  6. 置换及Pólya定理

    听大佬们说了这么久Pólya定理,终于有时间把这个定理学习一下了. 置换(permutation)简单来说就是一个(全)排列,比如 \(1,2,3,4\) 的一个置换为 \(3,1,2,4\).一般地 ...

  7. Burnside引理&Pólya定理

    Burnside's lemma 引例 题目描述 一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色, 问共有多少种本质不同的涂色方案. (若两种方案可通过旋转互相得到,称作本质相同的方案) 解 ...

  8. @总结 - 12@ burnside引理与pólya定理

    目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引 ...

  9. Pólya 定理学习笔记

    在介绍\(Polya\) 定理前,先来介绍一下群论(大概了解一下就好): 群是满足下列要求的集合: 封闭性:即有一个操作使对于这个集合中每个元素操作完都使这个集合中的元素 结合律:即对于上面那个操作有 ...

随机推荐

  1. JS检查当图片不存在时显示默认图片和键盘大小写键状态

    当图片不存在时显示默认图片 <script type="text/javascript"> var imgs = document.images; for(var i ...

  2. java中substring的用法

    substring 1.public String substring(int beginIndex).     返回一个新的字符串,它是此字符串的一个子字符串.该子字符串始于指定索引处的字符,一直到 ...

  3. zabbix监控系列(5)之通过trap模式监控网络设备

  4. spring核心之AOP学习总结二

    一:springAOP常用的注解 @Aspect:声明方面组件 @Before:声明前置通知 @After-returning:声明后置通知 @After:声明最终通知 @Around:声明环绕通知 ...

  5. Java中Volatile详解

    当前的Java内存模型下,线程可以把变量保存在本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写.这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的 ...

  6. 统计js数组中奇数元素的个数

    如何统计一个JS数组中奇数元素的个数呢? 这是群友提出的一个问题,大部分群友给出的是遍历 然后对2取模,得到最终结果. 这样的写法是最容易想得到的,那么有没有其他思路呢? 这里我提供另外一种思路,我们 ...

  7. osg内置shader变量

    uniform int osg_FrameNumber:当前OSG程序运行的帧数: uniform float osg_FrameTime:当前OSG程序的运行总时间: uniform float o ...

  8. [Command] sync - 同步内存与硬盘数据

    sync - 同步内存与硬盘之间的数据. sync [--help] [--version] sync 命令将内存中缓存的数据写入磁盘.这包括但不限于修改过的 superblock, inode 和延 ...

  9. 【Linux】将终端的命令输出保存为txt文本文件

    Linux中的终端很方便,可以直接复制粘贴的. 之后开一个gedit文本编辑器,把复制到的内容粘贴就可以的. 不像windows的cmd控制台,需要先右键标题栏,选择编辑->全选/标记,在右键标 ...

  10. iptraf:一个实用的TCP/UDP网络监控工具

    iptraf是一个基于ncurses的IP局域网监控器,用来生成包括TCP信息.UDP计数.ICMP和OSPF信息.以太网负载信息.节点状态信息.IP校验和错误等等统计数据. 它基于ncurses的用 ...