在之前的学习中,没有认真了解卷积神经网络,由于一些原因需要使用CNN来做图像分类,开始学习了卷积神经网络,参考了一些资料并做了这份记录

为什么要用卷积神经网络

在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。如果使用全连接层来进行处理的话,假设隐含层于输入层数量一样,那么从输入层到隐含层的参数数量为1000000×1000000=10^12。这个数据是巨大的。
并且对于复杂的图像的处理,往往会使用深度学习模型,然而多隐含层神经网络难以直接用经典算法(如标准BP)进行训练,因为误差在多隐层内部逆传播时,往往会“发散”(diverge)而不能收敛到稳定状态。

卷积神经网络利用"权共享"的策略,并且采用对图片进行预训练、特征提取的办法来减小参数数量

卷积神经网络

局部感知

卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。

在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的万分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。

参数共享

但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。
怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。
更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。
如下图所示,展示了一个3×3的卷积核在5×5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

上面所述只有100个参数时,表明只有1个10*10的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:

上图右,不同颜色表明不同的卷积核。每个卷积核都会将图像生成为另一幅图像。比如两个卷积核就可以将生成两幅图像,这两幅图像可以看做是一张图像的不同的通道。这个通道的寓意可以类比成彩色图片中的sRGB或RGB通道,我们对彩色图片的处理也是把彩色图片的RGB通道看成是图片的不同 feature map 一起做卷积操作。
下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果按权值相加然后再取激活函数值得到的。


下图是《西瓜书》中卷积神经网络的示意图

刚开始看的时候以为6@14*14的采样层,经过二次卷积后会变成 x*6@10*10(x为卷积核数),但是,这个是错误的理解,通过上面对通道的解释,已经可以理解,每次进行卷积操作是使用全部通道进行的。而不是针对单一个平面进行。因此产生的卷积层数和卷积核数量仍然是相等的。

参考链接:
http://dataunion.org/11692.html

CNN入门笔记的更多相关文章

  1. 卷积神经网络(CNN)学习笔记1:基础入门

    卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Vie ...

  2. keras搭建神经网络快速入门笔记

    之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...

  3. 每天成长一点---WEB前端学习入门笔记

    WEB前端学习入门笔记 从今天开始,本人就要学习WEB前端了. 经过老师的建议,说到他每天都会记录下来新的知识点,每天都是在围绕着这些问题来度过,很有必要每天抽出半个小时来写一个知识总结,及时对一天工 ...

  4. ES6入门笔记

    ES6入门笔记 02 Let&Const.md 增加了块级作用域. 常量 避免了变量提升 03 变量的解构赋值.md var [a, b, c] = [1, 2, 3]; var [[a,d] ...

  5. [Java入门笔记] 面向对象编程基础(二):方法详解

    什么是方法? 简介 在上一篇的blog中,我们知道了方法是类中的一个组成部分,是类或对象的行为特征的抽象. 无论是从语法和功能上来看,方法都有点类似与函数.但是,方法与传统的函数还是有着不同之处: 在 ...

  6. React.js入门笔记

    # React.js入门笔记 核心提示 这是本人学习react.js的第一篇入门笔记,估计也会是该系列涵盖内容最多的笔记,主要内容来自英文官方文档的快速上手部分和阮一峰博客教程.当然,还有我自己尝试的 ...

  7. redis入门笔记(2)

    redis入门笔记(2) 上篇文章介绍了redis的基本情况和支持的数据类型,本篇文章将介绍redis持久化.主从复制.简单的事务支持及发布订阅功能. 持久化 •redis是一个支持持久化的内存数据库 ...

  8. redis入门笔记(1)

    redis入门笔记(1) 1. Redis 简介 •Redis是一款开源的.高性能的键-值存储(key-value store).它常被称作是一款数据结构服务器(data structure serv ...

  9. OpenGLES入门笔记四

    原文参考地址:http://www.cnblogs.com/zilongshanren/archive/2011/08/08/2131019.html 一.编译Vertex Shaders和Fragm ...

随机推荐

  1. Http常见状态码说明

    一些常见的状态码为: 200 - 服务器成功返回网页404 - 请求的网页不存在503 - 服务不可用 详细分解: 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码.代码 说明100 ...

  2. POJ 2367:Genealogical tree(拓扑排序模板)

    Genealogical tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7285   Accepted: 4704 ...

  3. C#/.NET 使用 CommandLineParser 来标准化地解析命令行

    CommandLineParser 是一款用于解析命令行参数的 NuGet 包.你只需要关注你的业务,而命令行解析只需要极少量的配置代码. 本文将介绍如何使用 CommandLineParser 高效 ...

  4. Python3中 sys.argv的用法

    sys.avgr 是一个Python的引用模块.刚好做一个作业需要用到它,在sublime上编辑后运行,试图从结果发现它的用途,然而结果一直都是没结果. 后面在网上查了资料,才明白过来.sys.arg ...

  5. 在Spark上通过BulkLoad快速将海量数据导入到Hbase

    我们在<通过BulkLoad快速将海量数据导入到Hbase[Hadoop篇]>文中介绍了一种快速将海量数据导入Hbase的一种方法,而本文将介绍如何在Spark上使用Scala编写快速导入 ...

  6. dgraph cluster docker-compose 安装

    dgraph 是一款基于golang 的图数据库,使用了graphql+ 的查询方式 集群的安装官方也提供了对应的模版,比较简单 docker-compose 文件 我做了一些简单修改(数据存储的问题 ...

  7. npm bower gulp

    npm即nodejs package manager ,是nodeJs的包管理工具,使用前需安装nodeJs(https://www.npmjs.com.cn/getting-started/inst ...

  8. 共享设置及ftp设置

    第一部分 共享设置 一.添加编译选项 network---file transfer---aria2                                                   ...

  9. 什么是JavaBean、bean? 什么是POJO、PO、DTO、VO、BO ? 什么是EJB、EntityBean?

    什么是JavaBean.bean?  什么是POJO.PO.DTO.VO.BO ?  什么是EJB.EntityBean?   前言:   在Java开发中经常遇到这些概念问题,有的可能理解混淆,有的 ...

  10. Linux操作系统中/sbin/init程序的执行过程

    当init启动后,它通过执行各种启动事务来继续引导进程(检查并监视文件系统,启动后台程序daemons,等等),直至完成用户所有操作环境的设置工作.这里主要涉及4个程序:init.getty(aget ...