这个算法有点难度,一般比较标准的描述网页上也有相关的描述,我在这里就简单的用十分通俗的语言给大家入个门

主要可以结合https://blog.csdn.net/zsfcg/article/details/20738027这一篇来理解

首先要理解一些基本概念,看图

所谓匹配,就是不相邻的边的集合

最大匹配,就是这些集合中,边数最多的那个集合

如果某一个匹配中所有的边的两个端点包含了图上所有的点,就是完美匹配。

|N(S)|或者|X|或|Y|表示的是相应集合的元素的个数。

N(S)表示与S集合中的顶点相邻接的顶点,例如,A-B-C-D中,B的邻接点就是A和C。

A-B-C-D是一条增广路,红色线表示属于M匹配,黑色线表示不属于,图中,B,C两点是M饱和的,A,D两点是非M饱和的。

交替路故名思意就是交互替错的边,三条连续的边一个是匹配然后一个不是再下一个又是了

扩展路(增广路)可以理解为不是两个端点都在里面,所有的边里面有一些只有一个端点,也就是不饱和。

下面给出这个算法的步骤理解

上面这个算法只是针对饱和X的,意思就是,如果X中的每个顶点都已匹配上,那么算法终止,而不必管Y中的顶点是否都有匹配。

圆圈里面一个加号的运算其实可以简单理解为增广路的取反,所谓取反就是把属于M匹配的边变成不属于M的边,把不属于M的边变为属于M的边,在那个A-B-C-D的增广路的图例中就是把A-B和C-D边变成红色而把B-C边变成黑色。这样做一个明显的作用就是匹配的边数增多了一条!

我的理解是,这个算法的最终目的就是输出一个匹配,而其中所有X的端点必须全部包含在里面,

1、首先的前提必须是X比Y的个数要少,

2、然后取一个匹配出来看是不是饱和,是饱和就直接输出,不是的话取一个不饱和的端点放到S中,定义一个T空集合

3、看S中的端点是不是都在T里面,是的话就停止,不是的话S集合中的顶点相邻接的顶点(也就是N(s))去掉T中的点,再从中选一个点y

4、接下来看这个y,看它是不是饱和的

如果是饱和就把它对应的那个饱和的端点z放到S中,把y放到T当中,跳到第三步这里检查;

如果不是饱和,那这个时候有一个点x和它组成了增广路xy,反向选择它两边的路(在上面的实例图中就相当于A-B和C-D边变成红色而把B-C边变成黑色,明显的作用就是增多了一条匹配的边数),然后跳转到第二步。

所以总结一下的话,可以理解为它不断创造条件得到一个包含所有X端点的匹配,如果一开始没有找到,就先从图中找一个没有饱和的点,把它的另一个点加进来,然后看还有没有饱和的可能性),没有就把那条路的相邻的边加进来(就相当于这个边删掉,取它)

网页里面这个ppt的例子很直观,理解完上面的以后再看这个就很简单了

再次提一下N(S)表示与S集合中的顶点相邻接的顶点,而T其实是存放的计算过程中饱和的点

抽象的说,是我们在X这边保存了已经访问过的点S,在Y这边类似有T,从u点开始S和T都不断增大,每次只增大1,增大

的规则是u的邻接点y如果已经匹配z,就把y加到T,z加到S,下一步的操作,是换个u, 再将T中没有访问过的点再次考查

一遍。如果y没有匹配,那正好,根据你的访问规则,这个时候u和y肯定可以配对的,这样就可以增加配对了。

我们的工作是为了让配对的个数越来越多,直到最后不能再配对。不能配对的判定就是Hall定理,S的邻接点刚好是T。

以上就是匈牙利算法的基本步骤和计算过程了

下面来看看求二部图最大匹配的匈牙利算法,就是不管X还是Y,我们求得是含匹配边最多的匹配

一般的,我们会这样取顶点标号的值:l(y)全部赋值为0,而l(x)取得是和顶点x相邻接的所有的点之间的权重的最大值。下面有个例子用的就是这个方法。

“图G的平凡标号”那个图上X集中的各顶点上的数字5,2,4,1就是顶点标号,Y集中的顶点标号全为0。

这里仔细看一下的话5241就是所有的和这个端点相连的路中权重最大的值,然后把这些权重对应的路都找出来,就是相等子图咯

上面这个修改标号的过程是KM算法区别于匈牙利算法的地方。修改的目的是在目前找到的M匹配的基础上增加可行顶点,从而得到增广路。

这是我在写这篇翻阅的一些网站,特此感谢

http://www.bubuko.com/infodetail-2136960.html

https://blog.csdn.net/zsfcg/article/details/20738027

https://www.cnblogs.com/kuangbin/archive/2012/08/19/2646535.html(matlab的实现)

python代码实现的官网:https://pypi.org/project/munkres/1.0.5.4/

摘抄的一些零散的总结帮助大家理解

[二分图带权匹配与最佳匹配]

什么是二分图的带权匹配?二分图的带权匹配就是求出一个匹配集合,使得集合中边的权值之和最大或最小。而二分图的最佳匹配则一定为完备匹配,在此基础上,才要求匹配的边权值之和最大或最小。二分图的带权匹配与最佳匹配不等价,也不互相包含

这两个的关系比较悬乎。我的理解就是带权匹配是不考虑是不是完备,只求最大或最小权匹配。而最佳匹配则必须在完备匹配的基础上找最大或最小权匹配。

这两个还是结合具体题目比较好理解些。

KM算法是求最大权完备匹配,如果要求最小权完备匹配怎么办?方法很简单,只需将所有的边权值取其相反数,求最大权完备匹配,匹配的值再取相反数即可。

KM算法的运行要求是必须存在一个完备匹配,如果求一个最大权匹配(不一定完备)该如何办?依然很简单,把不存在的边权值赋为0。

KM算法求得的最大权匹配是边权值和最大,如果我想要边权之积最大,又怎样转化?还是不难办到,每条边权取自然对数,然后求最大和权匹配,求得的结果a再算出e^a就是最大积匹配。至于精度问题则没有更好的办法了。

二分图最优匹配:对于二分图的每条边都有一个权(非负),要求一种完备匹配方案,使得所有匹配边的权和最大,记做最优完备匹配。(特殊的,当所有边的权为1时,就是最大完备匹配问题)

定义     设G=<V1,V2,E>为二部图,|V1|≤|V2|,M为G中一个最大匹配,且|M|=|V1|,则称M为V1到V2完备匹配

在上述定义中,若|V2|=|V1|,则完备匹配即为完美匹配,若|V1|<|V2|,则完备匹配为G中最大匹配

KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立,初始A[i]为与xi相连的边的最大边权,B[j]=0。KM算法的正确性基于以下定理:

设 G(V,E) 为二部图, G'(V,E') 为二部图的子图。如果对于 G' 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G'(V,E') 为 G(V,E) 的等价子图或相等子图(是G的生成子图)。

若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和(即不是最优匹配)。所以相等子图的完备匹配一定是二分图的最大权匹配。

该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。

 

  KM算法的正确性基于以下定理:

 

  若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

 

  首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是

 

  Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。

 

  这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。

 

  初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

 

  我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:

 

  1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。

 

  2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。

 

  3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。

 

  4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

 

  现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:

 

  Min{A[ i ]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。  以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[ i ]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d。

 

  Kuhn-Munkras算法流程:

 

  (1)初始化可行顶标的值

 

  (2)用匈牙利算法寻找完备匹配

 

  (3)若未找到完备匹配则修改可行顶标的值

 

  (4)重复(2)(3)直到找到相等子图的完备匹配为止 

最后还是强调一点:

KM算法用来解决最大权匹配问题: 在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。

也就是最大权匹配一定是完备匹配。如果两边的点数相等则是完美匹配。

如果点数不相等,其实可以虚拟一些点,使得点数相等,也成为了完美匹配。

最大权匹配还可以用最大流去解决。。。

匈牙利算法(Kuhn-Munkres)算法的更多相关文章

  1. (转)二分图匹配匈牙利算法与KM算法

    匈牙利算法转自于: https://blog.csdn.net/dark_scope/article/details/8880547 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名 ...

  2. 算法:KMP算法

    算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...

  3. BF算法与KMP算法

    BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...

  4. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  5. javascript数据结构与算法--高级排序算法

    javascript数据结构与算法--高级排序算法 高级排序算法是处理大型数据集的最高效排序算法,它是处理的数据集可以达到上百万个元素,而不仅仅是几百个或者几千个.现在我们来学习下2种高级排序算法-- ...

  6. ISAP算法对 Dinic算法的改进

    ISAP算法对 Dinic算法的改进: 在刘汝佳图论的开头引言里面,就指出了,算法的本身细节优化,是比较复杂的,这些高质量的图论算法是无数优秀算法设计师的智慧结晶. 如果一时半会理解不清楚,也是正常的 ...

  7. 文本比较算法Ⅱ——Needleman/Wunsch算法

    在"文本比较算法Ⅰ--LD算法"中介绍了基于编辑距离的文本比较算法--LD算法. 本文介绍基于最长公共子串的文本比较算法--Needleman/Wunsch算法. 还是以实例说明: ...

  8. 文本比较算法三——SUNDAY 算法

    SUNDAY 算法描述: 字符串查找算法中,最著名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).两个算法在最坏情况下均具有线性的查找时间.但是在实用上 ...

  9. [算法]检测空间三角形相交算法(Devillers & Guigue算法)

    #pragma once //GYDevillersTriangle.h /* 快速检测空间三角形相交算法的代码实现(Devillers & Guigue算法) 博客原地址:http://bl ...

  10. 最短路径算法之Dijkstra算法(java实现)

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...

随机推荐

  1. codeforce 381 div2

    ---恢复内容开始--- C: 由mex函数性质可知 ,对任意一个区间,都需要从0开始依次填1,2直到填满,那么,所有区间最小mex的最大值取决于最短区间长度k. 构造a数组之需要从0-k-1依次填数 ...

  2. 总结:关于留学网站使用laravel框架的总结

    1.从git库中clone后本地项目根目录没有vendor文件夹,安装composer 2.composer install 报错 ,删除 composer.lock 文件,重新执行 composer ...

  3. 2019年第二阶段我要变强个人训练赛第八场 B.序列(seq)

    传送门 B.序列(seq) •题目描述 给出一个长度为n的序列a,每次对序列进行一下的某一个操作. •输入 第一行两个整数n,q表示序列长度和操作个数. 接下来一行n个数,表示序列a. 接下来q行表示 ...

  4. H3C DHCP系统组成

  5. JS事件委托(代理)学习笔记

    在开始之前我们先来熟悉一下HTML DOM addEventListener()方法,该方法用于向指定元素添加事件句柄.语法说明如下图所示: 主要想强调一下第三个参数useCapture,默认值为fa ...

  6. vue-learning:10-template-ref

    使用ref直接访问DOM元素 传统DOM操作或jQuery操作DOM,都必须是选择器先选择对应的DOM元素.比如: <button id="btn">按钮</bu ...

  7. mapstatetoprops更新state但props不更新渲染的问题

    通过react-redux和redux实现react组件之间的通信,reducer.action.store都编写正确,mapDispatchToProps也能正确传值.唯独mapStateToPro ...

  8. <Codeforce>1082A. Vasya and Book

    题目描述: Vasya is reading a e-book. The file of the book consists of nn pages, numbered from 11 to nn. ...

  9. 22.re(正则表达式)

    转载:https://www.cnblogs.com/yuanchenqi/article/5732581.html 就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言,(在Pyt ...

  10. 我的 2019 年 Python 文章榜单

    现在是 2020 年的第一天,我相信从昨天开始,各位的信息流里肯定充斥了各式各样的年度盘点/回顾/总结/记录之类的内容.虽然来得稍晚了,但我还是想给诸位送上这一篇文章. 我将在本文中列出自己于 201 ...