tf.variance_scaling_initializer() tensorflow学习:参数初始化
CNN中最重要的就是参数了,包括W,b。 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值。参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢?
所有的初始化方法都定义在tensorflow/python/ops/init_ops.py
1、tf.constant_initializer()
也可以简写为tf.Constant()
初始化为常数,这个非常有用,通常偏置项就是用它初始化的。
由它衍生出的两个初始化方法:
a、 tf.zeros_initializer(), 也可以简写为tf.Zeros()
b、tf.ones_initializer(), 也可以简写为tf.Ones()
例:在卷积层中,将偏置项b初始化为0,则有多种写法:
conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01)
bias_initializer=tf.Constant(0),
)
或者:
bias_initializer=tf.constant_initializer(0)
或者:
bias_initializer=tf.zeros_initializer()
或者:
bias_initializer=tf.Zeros()
例:如何将W初始化成拉普拉斯算子?
value = [1, 1, 1, 1, -8, 1, 1, 1,1]
init = tf.constant_initializer(value)
W= tf.get_variable('W', shape=[3, 3], initializer=init)
2、tf.truncated_normal_initializer()
或者简写为tf.TruncatedNormal()
生成截断正态分布的随机数,这个初始化方法好像在tf中用得比较多。
它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。
例:
或者:
conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
bias_initializer=tf.zero_initializer(),
)
3、tf.random_normal_initializer()
可简写为 tf.RandomNormal()
生成标准正态分布的随机数,参数和truncated_normal_initializer一样。
4、random_uniform_initializer = RandomUniform()
可简写为tf.RandomUniform()
生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。
5、tf.uniform_unit_scaling_initializer()
可简写为tf.UniformUnitScaling()
和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。参数为(factor=1.0, seed=None, dtype=dtypes.float32)
max_val = math.sqrt(3 / input_size) * factor
这里的input_size是指输入数据的维数,假设输入为x, 运算为x * W,则input_size= W.shape[0]
它的分布区间为[ -max_val, max_val]
6、tf.variance_scaling_initializer()
可简写为tf.VarianceScaling()
参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32)
scale: 缩放尺度(正浮点数)
mode: "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。
distribution:分布类型,"normal"或“uniform"中的一个。
当 distribution="normal" 的时候,生成truncated normal distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。
如果mode = "fan_in", n为输入单元的结点数;
如果mode = "fan_out",n为输出单元的结点数;
如果mode = "fan_avg",n为输入和输出单元结点数的平均值。
当distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则
limit = sqrt(3 * scale / n)
7、tf.orthogonal_initializer()
简写为tf.Orthogonal()
生成正交矩阵的随机数。
当需要生成的参数是2维时,这个正交矩阵是由均匀分布的随机数矩阵经过SVD分解而来。
8、tf.glorot_uniform_initializer()
也称之为Xavier uniform initializer,由一个均匀分布(uniform distribution)来初始化数据。
假设均匀分布的区间是[-limit, limit],则
limit=sqrt(6 / (fan_in + fan_out))
其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。
9、glorot_normal_initializer()
也称之为 Xavier normal initializer. 由一个 truncated normal distribution来初始化数据.
stddev = sqrt(2 / (fan_in + fan_out))
其中的fan_in和fan_out分别表示输入单元的结点数和输出单
tf.variance_scaling_initializer() tensorflow学习:参数初始化的更多相关文章
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- TensorFlow学习笔记(二)深层神经网络
一.深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法. 深层神经网络有两个非常重要的特性:深层和非线性. 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是 ...
- TensorFlow学习笔记——深层神经网络的整理
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从 ...
- tensorflow 1.0 学习:参数初始化(initializer)
CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我 ...
- tensorflow中的参数初始化方法
1. 初始化为常量 tf中使用tf.constant_initializer(value)类生成一个初始值为常量value的tensor对象. constant_initializer类的构造函数定义 ...
- pytorch和tensorflow的爱恨情仇之参数初始化
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本 ...
- Tensorflow学习教程------参数保存和提取重利用
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mni ...
- Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...
- C++学习8 构造函数的参数初始化表
构造函数是一种特殊的成员函数,在创建对象时自动执行,主要用来进行初始化工作,例如对 private 属性的成员变量赋值. 对成员变量的初始化,除了在构造函数的函数体中一一赋值,还可以采用参数初始化表. ...
随机推荐
- NFS客户端挂载目录后无写入权限的解决方案
转载至:https://blog.csdn.net/younger_china/article/details/52089337 在客户机通过 mount -o rw -t nfs 192.168.1 ...
- Linux与Unix shell编程指南(完整高清版).pdf
找到一本很详细的Linux Shell脚本教程,其实里面不光讲了Shell脚本编程,还介绍了系统的各种命令 http://vdisk.weibo.com/s/yVBlEojGMQMpv 本书共分五部分 ...
- mysqldump命令之数据库迁移
格式说明如下: mysqldump -h源主机IP -u源主机用户 -p源主机用户密码 数据库名 | mysql -h目标主机IP -u目标主机用户 -p目标用户密码 数据库名
- Nginx教程(五) Nginx配置文件详解 (转)
一. Nginx配置文件nginx.conf中文详解 #定义Nginx运行的用户和用户组 user www www; #nginx进程数,建议设置为等于CPU总核心数. worker_processe ...
- java 使用poi导出Excel,设置单元格保护不可编辑
//sheet表加密:等效excel的审阅菜单下的保护工作表 sheet.protectSheet(new String("333"));//333是密码 更多设置请参考:http ...
- mongodb的一些简单操作
mongo 使用 mongod 开机mongod --dbpath c:\mongo mongod --storageEngine mmapv1 --dbpath c:\mongo mongoimpo ...
- 2016中国银行Top100榜单发布 工行排首位
2016中国银行Top100榜单发布 工行排首位 2016-07-09 15:13:19 第一财经 2016年7月8日,中国银行业协会在京召开“<中国银行业发展报告(2016)>发布会 ...
- SDUT-2139_从起始点到目标点的最短步数(BFS)
数据结构实验之图论五:从起始点到目标点的最短步数(BFS) Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 在古老的魔兽 ...
- windows7蓝屏0x000000c4
故障还原: 360更新弹出更新提示,于是选择了关机自动更新,第二天开机发现电脑蓝屏报0x000000c4错误! 故障排查: 1.无法从最后一次正确配置启动windows7 2.无法进入安全模式 该错误 ...
- 【C++】STL :栈
c++stack(堆栈)是一个容器的改编,它实现了一个先进后出的数据结构(FILO) 使用该容器时需要包含#include<stack>头文件: 定义stack对象的示例代码如下: sta ...