tf.variance_scaling_initializer() tensorflow学习:参数初始化
CNN中最重要的就是参数了,包括W,b。 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值。参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢?
所有的初始化方法都定义在tensorflow/python/ops/init_ops.py
1、tf.constant_initializer()
也可以简写为tf.Constant()
初始化为常数,这个非常有用,通常偏置项就是用它初始化的。
由它衍生出的两个初始化方法:
a、 tf.zeros_initializer(), 也可以简写为tf.Zeros()
b、tf.ones_initializer(), 也可以简写为tf.Ones()
例:在卷积层中,将偏置项b初始化为0,则有多种写法:
conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01)
bias_initializer=tf.Constant(0),
)
或者:
bias_initializer=tf.constant_initializer(0)
或者:
bias_initializer=tf.zeros_initializer()
或者:
bias_initializer=tf.Zeros()
例:如何将W初始化成拉普拉斯算子?
value = [1, 1, 1, 1, -8, 1, 1, 1,1]
init = tf.constant_initializer(value)
W= tf.get_variable('W', shape=[3, 3], initializer=init)
2、tf.truncated_normal_initializer()
或者简写为tf.TruncatedNormal()
生成截断正态分布的随机数,这个初始化方法好像在tf中用得比较多。
它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。
例:
或者:
conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
bias_initializer=tf.zero_initializer(),
)
3、tf.random_normal_initializer()
可简写为 tf.RandomNormal()
生成标准正态分布的随机数,参数和truncated_normal_initializer一样。
4、random_uniform_initializer = RandomUniform()
可简写为tf.RandomUniform()
生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。
5、tf.uniform_unit_scaling_initializer()
可简写为tf.UniformUnitScaling()
和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。参数为(factor=1.0, seed=None, dtype=dtypes.float32)
max_val = math.sqrt(3 / input_size) * factor
这里的input_size是指输入数据的维数,假设输入为x, 运算为x * W,则input_size= W.shape[0]
它的分布区间为[ -max_val, max_val]
6、tf.variance_scaling_initializer()
可简写为tf.VarianceScaling()
参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32)
scale: 缩放尺度(正浮点数)
mode: "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。
distribution:分布类型,"normal"或“uniform"中的一个。
当 distribution="normal" 的时候,生成truncated normal distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。
如果mode = "fan_in", n为输入单元的结点数;
如果mode = "fan_out",n为输出单元的结点数;
如果mode = "fan_avg",n为输入和输出单元结点数的平均值。
当distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则
limit = sqrt(3 * scale / n)
7、tf.orthogonal_initializer()
简写为tf.Orthogonal()
生成正交矩阵的随机数。
当需要生成的参数是2维时,这个正交矩阵是由均匀分布的随机数矩阵经过SVD分解而来。
8、tf.glorot_uniform_initializer()
也称之为Xavier uniform initializer,由一个均匀分布(uniform distribution)来初始化数据。
假设均匀分布的区间是[-limit, limit],则
limit=sqrt(6 / (fan_in + fan_out))
其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。
9、glorot_normal_initializer()
也称之为 Xavier normal initializer. 由一个 truncated normal distribution来初始化数据.
stddev = sqrt(2 / (fan_in + fan_out))
其中的fan_in和fan_out分别表示输入单元的结点数和输出单
tf.variance_scaling_initializer() tensorflow学习:参数初始化的更多相关文章
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- TensorFlow学习笔记(二)深层神经网络
一.深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法. 深层神经网络有两个非常重要的特性:深层和非线性. 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是 ...
- TensorFlow学习笔记——深层神经网络的整理
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从 ...
- tensorflow 1.0 学习:参数初始化(initializer)
CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我 ...
- tensorflow中的参数初始化方法
1. 初始化为常量 tf中使用tf.constant_initializer(value)类生成一个初始值为常量value的tensor对象. constant_initializer类的构造函数定义 ...
- pytorch和tensorflow的爱恨情仇之参数初始化
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本 ...
- Tensorflow学习教程------参数保存和提取重利用
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mni ...
- Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...
- C++学习8 构造函数的参数初始化表
构造函数是一种特殊的成员函数,在创建对象时自动执行,主要用来进行初始化工作,例如对 private 属性的成员变量赋值. 对成员变量的初始化,除了在构造函数的函数体中一一赋值,还可以采用参数初始化表. ...
随机推荐
- 深入探索WebSockets
WebSockets简介 在2008年中期,开发人员Michael Carter和Ian Hickson特别敏锐地感受到Comet在实施任何真正强大的东西时所带来的痛苦和局限. 通过在IRC和W3C邮 ...
- js流星雨效果
css部分 div { border: 0px solid #fff; border-width: 0px 90px 2px 90px; border-color: transparent trans ...
- 使用帝国备份王软件提示 Parse error: syntax error, unexpected end of file
使用帝国备份王软件提示 Parse error: syntax error, unexpected end of file时, 可以尝试一下方法: 1.php.ini要把short_open_tag ...
- EMAS,一部淘宝十年移动互联网技术的演进史
导读 本文根据2018云栖大会深圳峰会·EMAS专场—移动互联的进化论,阿里巴巴高级技术专家泠茗< EMAS全景介绍>的演讲整理而成,文中就EMAS的起源史及EMAS的五大移动研发场景解决 ...
- node.js的path模块
path模块的各种API path.join([...paths]) 参数:paths <string> ,paths参数是字符串,这些字符串按路径片段顺序排列,(A sequence o ...
- php-imagick扩展
介绍 magick 是用 ImageMagic API 来创建和修改图像的PHP官方扩展.ImageMagick® 是用来创建,编辑,合并位图图像的一套组件. 它能够用于读取,转换,写入多种不同格式的 ...
- 【JZOJ4910】【NOIP2017模拟12.3】子串
题目描述 数据范围 =w= 暴力: 从前往后枚举一个i,再从前往后枚举一个j: 如果s[i]不是s[j]的子串,更新答案,继续枚举: 如果s[i]是s[j]的子串,停止枚举. 因为对于s[k] (k& ...
- 接口测试 Postman 做接口自动化测试_入门篇
可能是目前最好用的web接口调试工具 无需注册(注册后可多终端同步用例) 免费(每年付费$60可用云服务,30天免费试用) 保存历史记录 支持录制请求 基于Chrome的V8引擎,支持JS脚本(基本支 ...
- NodeJS基础之Express路由和中间件
路由 路由是指如何定义应用的端点(URIs)以及如何响应客户端的请求. 路由是由一个 URI.HTTP 请求(GET.POST等)和若干个句柄组成,它的结构如下: app.method(path, [ ...
- Linux进程管理(二、 进程创建)
通常使用fork创建进程, 也可以用vfork()和clone().fork.vfork和clone三个用户态函数均由libc库提供,它们分别会调用Linux内核提供的同名系统调用fork,vfork ...