题目描述:

幽香这几天学习了魔法,准备建造一个大型的时空传送阵。

幽香现在可以在幻想乡的n个地点建造一些传送门,如果她建造了从地点a与地点b之间的传送门,那么从a到b和从b到a都只需要单位1的时间。

同时这些地点之间在地理上是非常遥远的,因此来往他们必须使用传送门。

现在幽香想要问你,有多少种建造传送门的方案,使得地点1和地点n之间的最短距离恰好为k?两个方案不同当且仅当建造的传送门的集合不同。不能建造节点到自身的传送门,两个点之间也最多造一个传送门。

分析:

  DP...

  然而考场上没时间了,只打了20pts(k==1)

  为了防止变量名冲突,题面中的k在代码中都用m代替!!!

  首先:显然这道题的合法路径是一层一层的节点组成的

  然后就可以DP了(话说考场上状态设计都设计出来了,转移没时间了...)

  设f[i][j][k]表示当前进行到第i层,总共使用了j个节点,第i层使用了k个节点

  显然这个可以有f[i-1][j-k][s]转移过来,我们只要枚举s就可以了,现在我们只要计算f[i-1][j-k][s]的系数就好了

  分类讨论:

    当i<m时:

      ①可以当前层内部连边,也就是$2^{C_k^2}$种可能

      ②当前层与上一层连边,且当前层的所有点至少有一条边连出去,也就是$(\sum\limits_{p=1}^{s}C_s^p-1)^k$

        tip:上式子用二项式定理可以化简为$(2^{s}-1)^k$

      ③注意到当前这k个点是从剩下的n-j+k-1(最后减一是因为第n个点必须放在第m层)所以从这里面选k个点,方案数为$C_{n-j+k-1}^k$

    综上:$$f[i][j][s]=\sum f[i-1][j-k][s]*(2^s-1)^k*C_{n-j+k-1}^k*C_k^2$$

    当i==m时

      注意到只有第③个条件需要改变,也就是说第n个点肯定在这一层,所以只要在n-j+k-1中选择k-1的点即可,方案数为$C_{n-j+k-1}^{k-1}$

    即:$$f[i][j][s]=\sum f[i-1][j-k][s]*(2^s-1)^k*C_{n-j+k-1}^{k-1}*C_k^2$$

  预处理一下组合数,及时取模,结合快速幂就好了

 #include<bits/stdc++.h>
#define int long long
using namespace std;
inline int read(){
int ans=,f=;char chr=getchar();
while(!isdigit(chr)){if(chr=='-')f=-;chr=getchar();}
while(isdigit(chr)) {ans=(ans<<)+(ans<<)+chr-;chr=getchar();}
return ans*f;
}const int P = 1e9+;
int n,m,f[][][],ans,cc[][];
int ksm(int x,int p){
int ans=;
for(;p;p>>=,x=x*x%P) if(p&) ans=ans*x%P;
return ans;
}
int C(int x,int y){
int mul=;
for(int i=;i<=y;i++) mul=mul*i%P;
for(int i=;i<=x-y;i++) mul=mul*i%P;
int t=ksm(mul,P-);
mul=;
for(int i=;i<=x;i++) mul=mul*i%P;
mul=mul*t%P;
}
inline void Add(int &x,int y){x=x+y;if(x>=P)x-=P;}
inline void Solve(){
f[][][]=;
for(int i=;i<=m;++i)
for(int j=;j<=n;++j)
for(int k=;k<=j;k++){
for(int s=;s<=j-k;s++)
if(i<m)//第一种
Add(f[i][j][k],f[i-][j-k][s]*ksm(,(k-)*k/)%P*cc[n-j+k-][k]%P*ksm(ksm(,s)-,k)%P);
else//第二种
Add(f[i][j][k],f[i-][j-k][s]*ksm(,(k-)*k/)%P*cc[n-j+k-][k-]%P*ksm(ksm(,s)-,k)%P);
}
for(int i=m+;i<=n;i++)
for(int j=;j<=n;j++)
Add(ans,f[m][i][j]*ksm(,(n-i)*(n-i-)/+j*(n-i)%P)%P);
cout<<ans<<endl;
}
signed main(){
freopen("timegate.in","r",stdin);
freopen("timegate.out","w",stdout);
for(int i=;i<=;i++)for(int j=;j<=i;j++)cc[i][j]=C(i,j);//预处理组合数
n=read(),m=read();
Solve();
return ;
}

[NOIP2019模拟赛]HC1147 时空阵的更多相关文章

  1. test20190827 NOIP2019 模拟赛

    100+100+50=250.最后那道期望题需要用另外的方式统计. 精灵加护 ljss 被 M 个敌人打倒在地上啦!每个敌人有一个威力值 bi.但是他手中还拥有 N 把武器!每把武器有一个威力值 ai ...

  2. test20190826 NOIP2019 模拟赛

    100+100+40=240.我觉得如果没做过第三题考场上却能想出来的都是神仙. 基因突变 [问题描述] 邪恶的 707 刚刚从白垩纪穿越回来,心中产生了一个念头:我要统治人类! 但是统治人类是很庞大 ...

  3. test20190818 NOIP2019 模拟赛

    0+0+20=20,不给大样例,小数据又水,还没有题解的垃圾题. A 题 问题描述: long long ago, Lxhgww 统治的国家里有 n 个城市,其中某一个城市是 capital (首都) ...

  4. test20190816 NOIP2019 模拟赛

    100+100+20=220,T3吐槽:整个考室没有一个人正确地理解了题意. 树上路径(phantasm) Akari 的学校的校门前生长着一排 n 棵树,从西向东依次编号为 1 ∼ n.相邻两棵树间 ...

  5. 题解 noip2019模拟赛Day1T3

    题面 运河计划 问题描述 水运在人类的交通运输史中一直扮演着重要的角色.借助河流.的便利,人们得以把大量的货物输送到天南海北不仅仅是自然界现成的河流,人工开凿的运河(如苏伊士运河.巴拿马运河.我国的京 ...

  6. [NOIP2019模拟赛]LuoguP4261白金元首与克劳德斯

    题目描述 给出坐标系中n个矩形,类型1的矩形每单位时间向x轴正方向移动1个单位,类型2的矩形向y轴正方向,初始矩形不重叠,一个点被矩形覆盖当且仅当它在矩形内部(不含边界),求$(-\infty ,+\ ...

  7. [NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook

    题目链接 评测姬好快啊(港记号?)暴力40pts变成60pts 因为题目说了保证蓝色点两两之间只有一条路径,所以肯定组成了一棵树,而对于每次询问的x1,y1,x2,y2的子矩阵中就存在着一个森林 不难 ...

  8. [NOIP2019模拟赛]数数(gcd)

    题目大意: 求l~r中有多少数与x互质,带单点修改 分析: 两个30的部分分很好打: ·n<=1000暴力O(nq)就好了 ·$a_i<=100$用树状数组维护每个x的前缀和就好了 100 ...

  9. [NOIP2019模拟赛]序列(Sequence)

    题目大意 有一个序列$A_i$ • 对于 i ≥ 1,如果有$ A_i > 0.A_{i+1}> 0$ 且存在 $A_{i+2}$,那么法老可以令$ Ai$ 和 $A_{i+1}$ 减一, ...

随机推荐

  1. CF16E Fish(状压+期望dp)

    [传送门[(https://www.luogu.org/problemnew/show/CF16E) 解题思路 比较简单的状压+期望.设\(f[S]\)表示\(S\)这个状态的期望,转移时挑两条活着的 ...

  2. Python 爬虫-抓取小说《盗墓笔记-怒海潜沙》

    最近想看盗墓笔记,看了一下网页代码,竟然不是js防爬虫,那就用简单的代码爬下了一节: """ 爬取盗墓笔记小说-七星鲁王宫 """ from ...

  3. Java设计模式简单总结

    1.单例模式:在应用程序整个生命周期中,单例类的实例只有一个,并且会自动实例化.单例类的构造方法必须为私有,并且提供一个全局访问点 public class Test { private Test() ...

  4. 简单HOOK SSDT实现文件防删除

    http://www.rosoo.net/a/201001/8347.html

  5. 顺时针打印矩阵元素(python实现)

    我觉得我的算法比较简单易懂,比网上的那些简单些.至于时间复杂度就没有比较了. 算法思想:从最外层向内层遍历矩阵 # my algorithmimport math def print_matrix(m ...

  6. MySQL查询语句详解,排序、分组、聚合函数、约束

    create database day20; 查询的时候from前面的字段是需要显示出来的内容,后面是条件use day20;create table phones(id int,pinpai var ...

  7. Python匹马行天下之面向对象

    概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最易被初学 ...

  8. Error: setup script specifies an absolute path

    在安装sklearn的时候,出现: error: Error: setup script specifies an absolute path: /opt/xgboost-0.47/python-pa ...

  9. 关于用Linux桌面版当工作系统这件事

    Linux稳定性好,Linux软件开放--不过等到决定把Linux当作日常工作用系统时,就一言难尽了-- 我日常工作的需求有: 笔记本扩展屏幕 Golang开发 docker/kubernetes 输 ...

  10. Python自学:第四章 在for循环中执行更多操作(1)

    # -*- coding: GBK -*- magicians = ['alice', 'david', 'carolina'] for magician in magicians: print(ma ...