题目

显然一个熟练的选手应该能一眼看出我们需要维护点对的答案

显然在断开或连上某一条边的时候只会对左右两边联通的点产生贡献,这个拿\(set\)维护一下就好了

那现在的问题就是怎么维护了

考虑一个非常\(sb\)的问题,我们只想知道一个点对\((x,y)\)从开始到某个时间\(t\)有多少个时间是联通的

如果\(i\)时刻\((x,y)\)突然联通了,那么我们就把答案加上\(t-i+1\),如果\(i\)时刻\((x,y)\)突然断开了,我们就把答案减去\(t-i+1\),正确性显然

于是我们只需要分别维护那些常数和加上了多少个当前时间就可以回答任意时刻的询问了

所以问题变成了矩阵加单点查,显然可以差分之后变成一个三维偏序问题,可以直接大力\(cdq\),当然也可以直接上树套树

代码

#include <bits/stdc++.h>
#define L first
#define R second
#define re register
#define LL long long
#define lb(x) ((x) & (-x))
#define mp std::make_pair
#define set_it std::set<pii>::iterator
inline int read() {
char c = getchar();
int x = 0;
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - 48, c = getchar();
return x;
}
typedef std::pair<int, int> pii;
const int maxn = 3e5 + 5;
const int M = maxn * 200;
std::set<pii> s;
int n, m, B, cnt;
char S[maxn], op[12];
int rt[maxn << 2];
LL g[M], A;
int h[M], l[M], r[M];
int ins(int now, int x, int y, int pos, int v, int w) {
if (!now)
now = ++cnt;
if (x == y) {
g[now] += v, h[now] += w;
return now;
}
int mid = x + y >> 1;
if (pos <= mid)
l[now] = ins(l[now], x, mid, pos, v, w);
else
r[now] = ins(r[now], mid + 1, y, pos, v, w);
g[now] = g[l[now]] + g[r[now]];
h[now] = h[l[now]] + h[r[now]];
return now;
}
void find(int now, int x, int y, int pos) {
if (!now)
return;
if (x == y) {
A += g[now];
B += h[now];
return;
}
int mid = x + y >> 1;
if (pos <= mid)
find(l[now], x, mid, pos);
else
find(r[now], mid + 1, y, pos), A += g[l[now]], B += h[l[now]];
}
void change(int x, int y, int a, int b) {
if (y > n)
return;
for (re int i = x; i <= n; i += lb(i)) rt[i] = ins(rt[i], 1, n, y, a, b);
}
void query(int x, int y) {
for (re int i = x; i; i -= lb(i)) find(rt[i], 1, n, y);
}
inline pii ask(int pos) {
s.insert(mp(pos, n + 1));
set_it it = s.find(mp(pos, n + 1));
--it;
s.erase(mp(pos, n + 1));
return *it;
}
inline void add(int x, int y, int lx, int ry, int t, int v) {
change(x, lx, v * (1 - t), v);
change(x, ry + 1, v * (t - 1), -1 * v);
change(y + 1, lx, v * (t - 1), -1 * v);
change(y + 1, ry + 1, v * (1 - t), v);
}
inline void getAns(int t) {
int x = read(), y = read();
if (x > y)
std::swap(x, y);
A = 0, B = 0;
query(x, y);
printf("%d\n", A + B * t);
}
int main() {
n = read() + 1, m = read();
scanf("%s", S + 1);
for (re int i = 1; i < n; i++) S[i] -= '0';
int t = 1;
for (re int i = 1; i <= n; i++)
if (!S[i])
s.insert(mp(t, i)), t = i + 1;
for (set_it it = s.begin(); it != s.end(); ++it) add((*it).L, (*it).R, (*it).L, (*it).R, 0, 1);
for (re int i = 1; i <= m; i++) {
scanf("%s", op);
if (op[0] == 'q')
getAns(i - 1);
if (op[0] == 't') {
int x = read();
pii ll = ask(x), rr = ask(x + 1);
if (!S[x]) {
add(ll.L, ll.R, rr.L, rr.R, i, 1);
s.erase(ll), s.erase(rr);
s.insert(mp(ll.L, rr.R));
} else {
add(ll.L, x, x + 1, rr.R, i, -1);
s.erase(ll);
s.insert(mp(ll.L, x));
s.insert(mp(x + 1, rr.R));
}
S[x] ^= 1;
}
}
return 0;
}

「APIO 2019」路灯的更多相关文章

  1. #3146. 「APIO 2019」路灯

    #3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...

  2. #3145. 「APIO 2019」桥梁

    #3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...

  3. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  4. 「APIO 2019」桥梁

    题目 三天终于把\(APIO\)做完了 这题还是比较厉害的,如果不知道这是个分块应该就自闭了 考虑一个非常妙的操作,按照操作分块 我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的 ...

  5. 【LOJ #3144】「APIO 2019」奇怪装置

    题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...

  6. 「APIO 2019」奇怪装置

    题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...

  7. 「WC 2019」数树

    「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...

  8. LOJ#3054. 「HNOI 2019」鱼

    LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...

  9. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

随机推荐

  1. 二分图染色+分组背包+bitset优化——hdu5313

    首先就是求联通块,每个联通块里记录两个部分的元素个数 目标是使一边的体积接近n/2 那么每个联通块作为一组,进行分组背包,dp[i]表示体积i是否可以被凑出来,可行性背包是可以用bitset优化的 最 ...

  2. hive的数据存储格式

    hive的数据存储格式 Hive支持的存储数的格式主要有:TEXTFILE(行式存储) .SEQUENCEFILE(行式存储).ORC(列式存储).PARQUET(列式存储). 1 列式存储和行式存储 ...

  3. NX二次开发-UFUN编辑图层类别描述UF_LAYER_edit_category_descr

    1 NX11+VS2013 2 3 #include <uf.h> 4 #include <uf_layer.h> 5 6 7 UF_initialize(); 8 9 //创 ...

  4. Annotation详解

    转自:http://www.doc88.com/p-995532241886.html 首先我们定义一个简单的注解 package com.qjy.annotation; import java.la ...

  5. CocoaPods更新2018年11月06日16:06:48

    https://gems.ruby-china.org点进去就知道了…… CocoaPods命令 更新 sudo gem install -n /usr/local/bin cocoapods --p ...

  6. POJ-1836-Alignment-双向LIS(最长上升子序列)(LIS+LSD)+dp

    In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are al ...

  7. 2018今日头条湖北省赛【A】

    [题目链接]https://www.nowcoder.com/acm/contest/104/A 这题就是很简单的几何题..md现场推了很久的cos sin仿佛像个zz.自己都想给自己一巴掌. 题意就 ...

  8. 2018-10-8-3分钟教你搭建-gitea-在-Centos-服务器

    title author date CreateTime categories 3分钟教你搭建 gitea 在 Centos 服务器 lindexi 2018-10-08 09:54:39 +0800 ...

  9. Windows中的"簇"和Linux中的"块"是对应的

    扇区是对硬盘而言,块是对文件系统而言. 簇”又称为“分配单元” ,文件系统是操作系统与驱动器之间的接口,当操作系统请求从硬盘里读取一个文件时,会请求相应的文件系统(FAT 16/32/NTFS)打开文 ...

  10. css---文本新增样式

    opacity属性指定了一个元素的透明度 默认值:1.0 不可继承    兼容性不是太好 兼容性写法 opacity{ opacity:0.5; filter:alpha(opacity=); //f ...