为什么样本方差的分母是n-1?最简单的原因,是因为因为均值已经用了n个数的平均来做估计在求方差时,只有(n-1)个数和均值信息是不相关的。而你的第n个数已经可以由前(n-1)个数和均值 来唯一确定,实际上没有信息量。所以在计算方差时,只除以(n-1)。

那么更严格的证明呢?请耐心的看下去。


样本方差计算公式里分母为的目的是为了让方差的估计是无偏的。

无偏的估计(unbiased estimator)比有偏估计(biased estimator)更好是符合直觉的,尽管有的统计学家认为让mean square error即MSE最小才更有意义,这个问题我们不在这里探讨;不符合直觉的是,为什么分母必须得是而不是才能使得该估计无偏。

首先,我们假定随机变量的数学期望是已知的,然而方差未知。在这个条件下,根据方差的定义我们有

由此可得

因此

是方差的一个无偏估计,注意式中的分母不偏不倚正好是!这个结果符合直觉,并且在数学上也是显而易见的。

现在,我们考虑随机变量的数学期望是未知的情形。这时,我们会倾向于无脑直接用样本均值替换掉上面式子中的。这样做有什么后果呢?后果就是,如果直接使用

作为估计,那么你会倾向于低估方差!这是因为:

换言之,除非正好,否则我们一定有

而不等式右边的那位才是的对方差的“正确”估计!这个不等式说明了,为什么直接使用

会导致对方差的低估。

那么,在不知道随机变量真实数学期望的前提下,如何“正确”的估计方差呢?答案是把上式中的分母n换成n-1,通过这种方法把原来的偏小的估计“放大”一点点,我们就能获得对方差的正确估计了:

至于为什么分母是n-1而不是n-2或者别的什么数,最好还是去看真正的数学证明,因为数学证明的根本目的就是告诉人们“为什么”;暂时我没有办法给出更“初等”的解释了。

更多机器学习、编程、AI相关知识,也欢迎关注我的公众号“图灵的猫”。关注公众号,点击“学习资料”菜单,即可获得海量机器学习、深度学习书籍等免费PDF资源~

为什么样本方差的分母是n-1?为什么它又叫做无偏估计?的更多相关文章

  1. 为什么样本方差自由度(分母)为n-1

    一.概念.条件及目的 1.概念 要理解样本方差的自由度为什么是n-1,得先理解自由度的概念: 自由度,是指附加给独立的观测值的约束或限制的个数,即一组数据中可以自由取值的个数. 2.成立条件 所谓自由 ...

  2. 为什么样本方差分母是n-1

    https://blog.csdn.net/qq_39521554/article/details/79633207 为什么样本方差的分母是n-1?为什么它又叫做无偏估计? 至于为什么是n-1,可以看 ...

  3. 样本方差的无偏估计与(n-1)的由来

    一.无偏估计 所谓总体参数估计量的无偏性指的是,基于不同的样本,使用该估计量可算出多个估计值,但它们的平均值等于被估参数的真值. 在某些场合下,无偏性的要求是有实际意义的.例如,假设在某厂商与某销售商 ...

  4. mode|平均数|方差|标准差|变异系数|四分位数|几何平均数|异众比率|偏态|峰态

    应用统计学 数据的概括性度量 集中趋势 Mode众数是唯一描述无序类别数据,由图可知众数便是图形中的峰. 对于类别变量,众数就是某一种类别. 中位数和平均数都可能不是样本中的值. 中位数不受极值影响, ...

  5. 样本方差:为嘛分母是n-1

    在样本方差计算式中,我们使用Xbar代替随机变量均值μ. 容易证明(参考随便一本会讲述样本方差的教材),只要Xbar不等于μ,sigma(Xi-Xbar)2必定小于sigma(Xi-μ)2. 然而,要 ...

  6. 为什么样本方差(sample variance)的分母是 n-1?

    为什么样本方差(sample variance)的分母是 n-1? (補充一句哦,題主問的方差 estimator 通常用 moments 方法估計.如果用的是 ML 方法,請不要多想不是你們想的那樣 ...

  7. 为什么方差的分母有时是n,有时是n-1 源于总体方差和样本方差的不同

    为什么样本方差(sample variance)的分母是 n-1? 样本方差计算公式里分母为n-1的目的是为了让方差的估计是无偏的.无偏的估计(unbiased estimator)比有偏估计(bia ...

  8. 为什么样本方差除以(n-1)而不是n ?(自由度)

    不记得第几次看见样本方差的公式,突然好奇为什么要除以(n-1)而不是n呢?看见一篇文章从定义上和无偏估计推导上讲的很清楚https://blog.csdn.net/fuming2021118535/a ...

  9. 样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n)

    样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n) 正态分布的n阶中心矩参见: http://www.doc88.com/p-334742692198.html

随机推荐

  1. H3C Comware的作用

  2. 请求(RequestInfo)

    请求类型 StringRequestInfo 用在 SuperSocket 命令行协议中. 你也可以根据你的应用程序的需要来定义你自己的请求类型. 例如, 如果所有请求都包含 DeviceID 信息, ...

  3. typescript基础语法--变量/函数/指令/类

    博客地址 :https://www.cnblogs.com/sandraryan/ 要把ts文件引入到html中,首先要转码为js文件. 步骤: 终端运行: npm i -g typescript t ...

  4. CODE FESTIVAL 2017 qual A C Palindromic Matrix(补题)

    彩笔看到题目后,除了懵逼,没有啥反应了,唯一想的就是 这是不是dp啊?看了题解才发现,原来是这样啊. 画几个矩阵看看就能看出来规律. 思路:先假设这是个M * N的矩阵 如果M和N都是偶数,则每个出现 ...

  5. poj 2451 Uyuw's Concert (半平面交)

    2451 -- Uyuw's Concert 继续半平面交,这还是简单的半平面交求面积,不过输入用cin超时了一次. 代码如下: #include <cstdio> #include &l ...

  6. 2019-8-31-dotnet-core-黑科技·String.IndexOf-性能

    title author date CreateTime categories dotnet core 黑科技·String.IndexOf 性能 lindexi 2019-08-31 16:55:5 ...

  7. Python--day62--删除出版社

    删除成出版社关键代码:

  8. vue在渲染之前拿到数据操作.......vue数据获取

    异步请求数据,但是生命周期函数也是异步的,怎么才能保证渲染之前就能拿到数据呢? 官方给了两种方案, 我们可以在异步获取数据的时候加上一个loading表示现在在获取数据..... 由于ajax是异步操 ...

  9. TESTNG+JENKINS持续集成

    一.环境搭建 安装testNG插件到eclipse. -) 选择菜单 Help /Software updates / Find and Install. -) 点击add button然后在loca ...

  10. 【31.95%】【CF 714B】Filya and Homework

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...