Intersecting Lines
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 12421   Accepted: 5548

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two
lines in the x-y plane and determine how and where the lines intersect.
All numbers required by this problem will be reasonable, say between
-1000 and 1000.

Input

The
first line contains an integer N between 1 and 10 describing how many
pairs of lines are represented. The next N lines will each contain eight
integers. These integers represent the coordinates of four points on
the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines
represents two lines on the plane: the line through (x1,y1) and (x2,y2)
and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always
distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There
should be N+2 lines of output. The first line of output should read
INTERSECTING LINES OUTPUT. There will then be one line of output for
each pair of planar lines represented by a line of input, describing how
the lines intersect: none, line, or point. If the intersection is a
point then your program should output the x and y coordinates of the
point, correct to two decimal places. The final line of output should
read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source

题意:给定 1 - 10组直线,判断每组直线的关系,若相交 输出交点坐标,保留两位小数;若平行,输出‘NONE’;若重合,输出‘LINE’;

输出格式详见标准输出。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <set>
#define ll long long
using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
pair<Point,int> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == )
{
if(sgn((b.s-s)^(b.e-s)) == )
return make_pair(res,);//两直线重合
else return make_pair(res,);//两直线平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return make_pair(res,);//有交点
}
}; int main(void)
{
int t;
double x1,x2,x3,x4,y1,y2,y3,y4;
scanf("%d",&t);
printf("INTERSECTING LINES OUTPUT\n");
while(t--)
{
scanf("%lf %lf %lf %lf %lf %lf %lf %lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4);
Line l1 = Line( Point(x1,y1) ,Point(x2,y2) );
Line l2 = Line( Point(x3,y3) ,Point(x4,y4) );
pair<Point,int> ans = l1 & l2;
if(ans.second == ) printf("POINT %.2f %.2f\n",ans.first.x,ans.first.y);
else if(ans.second == ) printf("LINE\n");
else printf("NONE\n");
}
printf("END OF OUTPUT\n"); return ;
}

poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)的更多相关文章

  1. POJ 1269 Intersecting Lines 判断两直线关系

    用的是初中学的方法 #include <iostream> #include <cstdio> #include <cstring> #include <al ...

  2. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

  3. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  4. POJ 1269 Intersecting Lines(几何)

    题目链接 题意 : 给你两条线段的起点和终点,一共四个点,让你求交点坐标,如果这四个点是共线的,输出“LINE”,如果是平行的就输出“NONE”. 思路 : 照着ZN留下的模板果然好用,直接套上模板了 ...

  5. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  6. POJ 1269 Intersecting Lines【判断直线相交】

    题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...

  7. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  8. poj 1269 Intersecting Lines

    题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...

  9. POJ 1269 - Intersecting Lines - [平面几何模板题]

    题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know ...

随机推荐

  1. <a>中的背景色变大

    想要调整文字链接背景颜色或图片的大小可以用padding属性: 但火狐和IE数值相同显示相同,但与360数值相同显示不同(上下宽度会变小.)

  2. vue 简单留言本

    代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...

  3. 0829NOIP模拟测试赛后总结

    这次发誓不会咕咕咕! 80分rank30完美爆炸. 拿到题目苏轼三连???貌似三篇古诗文我都会背啊hhh.爆零警告 T1没啥思路,打完暴力后想了大约20分钟决定分解个因数,在b次方中每一次方选择一个约 ...

  4. 通过挂钩NtCreateSection监控可执行模块

    通过挂钩 NtCreateSection 监控可执行模块 在 Win32 中,我们使用 CreateFileMapping 来创建映射文件对象,函数原型如下: HANDLE CreateFileMap ...

  5. PAT甲级——【牛客练习A1004】

    题目描述 An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For ex ...

  6. RQNOJ--160 竞赛真理(01背包)

    题目http://www.rqnoj.cn/problem/160 分析:这是一个01背包问题,对于每一道题目,都有两个选择"做"或者"不做". 但是唯一不同的 ...

  7. Lint found fatal errors while assembling a release target问题的解决方案

    此问题发生在编译为 release 版本时,出现错误提示如下: Lint found fatal errors while assembling a release target. To procee ...

  8. 2019-1-10-WPF-使用-RenderTargetBitmap-快速截图出现-COMException-提示

    title author date CreateTime categories WPF 使用 RenderTargetBitmap 快速截图出现 COMException 提示 lindexi 201 ...

  9. [51nod-1364]最大字典序排列

    [51nod-1364]最大字典序排列 Online Judge:51nod-1364 Label:线段树,树状数组,二分 题目描述 题解: 根据题意很容易想到60%数据的\(O(N^2logN)\) ...

  10. C++嵌套类(内部类与外部类)

    在一个类中定义的类被称为嵌套类,定义嵌套类的类被称为外部类.; //不能访问 mytest::i = 10;//不能访问 } private: class mytest { int i; int j; ...