线性筛-mobius,强大O(n)
首先,你要知道什么是莫比乌斯函数
然后,你要知道什么是积性函数
最后,你最好知道什么是线性筛
知道了,就可以愉快的写mobius函数了
由定义:
μ(n)= 1 (n=1)
(-1)^k (n=p1p2...pk) /* 注意质因子次数为1因为次数大于等于2则含有平方因子 */
0 (其他)
为什么关系平方因子呢?
因为,由定义:
/*
莫比乌斯函数完整定义的通俗表达:
1)莫比乌斯函数μ(n)的定义域是N
2)μ(1)=1
3)当n存在平方因子时,μ(n)=0
4)当n是素数,μ(n)=-1
5)当n是奇数个不同素数之积时,μ(n)=-1
6)当n是偶数个不同素数之积时,μ(n)=1
*/
Hint
由μ函数本身的积性
所以对于其他情况,只需要O(1)的从 mu[i] -> mu[i*p[j]] 就可以了
mu[i*p[j]]=-mu[i];
综上所述:
const int maxn=+;
int mu[maxn],p[maxn],flag[maxn],cnt;
void mobius(int n){
mu[]=;
for(int i=;i<=n;i++){
if(!flag[i])p[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt && i*p[j]<=n;j++){
flag[i*p[j]]=;
if(i%p[j]==){mu[i*p[j]]=;break;}
mu[i*p[j]]=-mu[i];
}
}
}
mobius
线性筛-mobius,强大O(n)的更多相关文章
- 线性筛-euler,强大O(n)
欧拉函数是少于或等于n的数中与n互质的数的数目 φ(1)=1(定义) 类似与莫比乌斯函数,基于欧拉函数的积性 φ(xy)=φ(x)φ(y) 由唯一分解定理展开显然,得证 精髓在于对于积性的应用: ){ ...
- jzp线性筛及其简单应用
前言: 很久以前看过了线性筛,没怎么注意原理,但是后来发现线性筛还有很有用的.. 比如上次做的一道题就需要找出每个数的最小质因子,先筛再找就太慢了..一看线性筛发现就可以直接在筛的过程中处理出来了! ...
- Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)
一通套路之后得到 求出中间那个函数的前缀和的话就可以整除分块了. 暴力求的话复杂度其实很优秀了,大约在n~nlogn之间. 不过可以线性筛做到严格线性.考虑其最小质因子,如果是平方因子那么只有其有贡献 ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]
题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...
- 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
随机推荐
- 大话STM32F103系统架构
前言 许多像我一样的STM32初学者,都往往忽视了STM32系统架构的学习.这对于实际应用并没有啥大的影响,但是总感觉怎么学也无法看清STM32的全貌,所以本文我将带领大家一起厘清STM32F103的 ...
- 获取properties文件的内容
获取properties文件的内容 public void test() throws Exception{ String resource = "application.propertie ...
- The Number of Inversions(逆序数)
For a given sequence A={a0,a1,...an−1}A={a0,a1,...an−1}, the number of pairs (i,j)(i,j) where ai> ...
- python语言基础3
一:python函数 是组织好的,可重复使用的,用来实现单一,或相关联功能的代码块.以前使用过的一些Python提供的内建函数,如print().max(4,18).min(100,50).当然我们自 ...
- Server2012多用户远程桌面及问题解决记录
1.开启远程桌面 转载自 https://jingyan.baidu.com/article/c275f6ba9321fda33c756712.html 2.添加用户 转载自 https://jin ...
- Django学习笔记4
Referto https://docs.djangoproject.com/zh-hans/2.2/intro/tutorial04/ Since we have the abstract conc ...
- svg 放大缩小后的比例
function getCoords(evt) { // 计算出当前屏幕与svg的比例 var canvas = document.getElementById("canvase&qu ...
- python之路递归、冒泡算法、装饰器
map使用 完整用户名登录,注册 冒泡排序 递归 def func(arg1,arg2): if arg1 == 0: print arg1, arg2 arg3 = arg1 + arg2 prin ...
- 【SQL】基础概念
1.. In order to find the rows where the value for a column is or is not NULL, you would use IS NULL ...
- 《TCP/IP入门经典》摘录--Part 1
TCP/IP基础知识 什么是TCP/IP Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议, ...