深度学习之tensorflow框架(下)
def tensor_demo():
"""
张量的演示
:return:
"""
tensor1 = tf.constant(4.0)
tensor2 = tf.constant([1, 2, 3, 4])
linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)
print("tensor1:\n", tensor1)
print("tensor2:\n", tensor2)
print("linear_squares:\n", linear_squares) # 生成常用张量
tensor3 = tf.zeros(shape=(3, 4))
print("tensor3:\n", tensor3)
tensor4 = tf.ones(shape=(2, 3, 4))
print("tensor4:\n", tensor4)
tensor5 = tf.random_normal(shape=(2, 3), mean=1.75, stddev=0.2)
print("tensor5:\n", tensor5) with tf.compat.v1.Session() as sess:
print("tensor3_value:\n", tensor3.eval())
print("tensor4_value:\n", tensor4.eval())
print("tensor4_value:\n", tensor5.eval()) return None def tensoredit_demo():
"""
张量类型的修改
:return:
"""
linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)
print("linear_squares_before:\n", linear_squares) l_cast = tf.cast(linear_squares, dtype=tf.float32)
print("linear_squares_after:\n", linear_squares)
print("l_cast:\n", l_cast)
return None def editstaticshape_demo():
"""
更新/改变静态形状
:return:
"""
a = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, None])
b = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, 10])
c = tf.compat.v1.placeholder(dtype=tf.float32, shape=[3, 2])
print("a:\n", a)
print("b:\n", b)
print("c:\n", c) # 更新形状未确定的部分
a.set_shape([2, 3])
b.set_shape([2, 10])
print("a:\n", a)
print("b:\n", b) return None; def editshape_demo():
"""
更新/改变动态形状
不会改变原始的tensor
返回新的改变类型后的tensor
:return:
"""
a = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, None])
print("a:\n", a)
a.set_shape([2, 3])
print("a_setShape:\n", a)
# 元素个数没有变,还是2*3*1=6个
a_reshape = tf.reshape(a,shape=[2,3,1])
print("a_reshape:\n", a_reshape)
print("a:\n", a) return None; def variable_demo():
"""
变量的演示
变量需要显式初始化,才能运行值
:return:
"""
# 创建变量
# 使用命名空间可以使图的结构更加清晰
with tf.variable_scope("myscope"):
a = tf.Variable(initial_value=50)
b = tf.Variable(initial_value=40)
with tf.variable_scope("yourscope"):
c= tf.add(a,b)
print("a:\n",a)
print("b:\n",b)
print("c:\n",c) # 初始化变量
init = tf.global_variables_initializer() # 开启会话
with tf.Session() as sess:
sess.run(init)
a_value,b_value,c_value=sess.run([a,b,c])
print("a_value:\n",a_value)
print("b_value:\n",b_value)
print("c_value:\n",c_value) return None
深度学习之tensorflow框架(下)的更多相关文章
- 初学深度学习(TensorFlow框架的心得and经验总结)自用环境的总结
初学者的时间大部分浪费在了环境上了: 建议直接上Linux系统,我推荐国产的深度系统,deepin这几年一直在不断的发展,现在15.4已经很不错了 1,图形化界面很漂亮,内置正版crossover,并 ...
- 深度学习之tensorflow框架(中)
会话 开启会话 tf.Session用于完整的程序中 tf.InteractiveSession用于交互式上下文中的tensorflow 查看张量的值 都必须在会话里面 c_new_value=new ...
- 深度学习之tensorflow框架(上)
import tensorflow as tf import os os.environ[' def tensorflow_demo(): #原生python加法运算 a = 2; b=3; c=a+ ...
- 对比深度学习十大框架:TensorFlow 并非最好?
http://www.oschina.net/news/80593/deep-learning-frameworks-a-review-before-finishing-2016 TensorFlow ...
- 作为深度学习最强框架的TensorFlow如何进行时序预测!(转)
作为深度学习最强框架的TensorFlow如何进行时序预测! BigQuant 2 个月前 摘要: 2017年深度学习框架关注度排名tensorflow以绝对的优势占领榜首,本文通过一个小例子介绍了T ...
- 深度学习调用TensorFlow、PyTorch等框架
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模 ...
- 深度学习之 TensorFlow(一):基础库包的安装
1.TensorFlow 简介:TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一. 2.TensorFlow 环境的准备: 本人使用 macOS,Python 版本直 ...
- 深度学习之TensorFlow安装与初体验
深度学习之TensorFlow安装与初体验 学习前 搞懂一些关系和概念 首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的 ...
- [源码解析] 深度学习分布式训练框架 Horovod (1) --- 基础知识
[源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并 ...
随机推荐
- CVE-2019-9081:laravel框架序列化RCE复现分析
这里贴上两篇大佬的分析的帖子 本人习惯把平常的一些笔记或者好的帖子记录在自己的博客当中,便于之后遇到同样的漏洞时快速打开思路 1.https://xz.aliyun.com/t/5510#toc-8 ...
- spring整合websocket,如何在服务端依赖注入service
1.在pom.xml文件中添加jar包: <properties> <spring.version>4.0.5.RELEASE</spring.version> & ...
- 题解【洛谷P2264】情书
题面 看到每一单词在同一句话中出现多次感动值不叠加,一眼想到 \(\text{set}\). 首先将词汇列表中的单词存储起来,我用的是 \(\text{set}\). 对于每一个句子的单词,我们可以先 ...
- vs2017+resharper之常用快捷键备忘
1.安装resharper后以vs2017的快捷键为主,让resharper作为一些方便的快捷键的补充. 2.vs2017的c++6的键盘布局模式快捷键 IntelliSence: 列表成员: Ctr ...
- git命令全景图
- pytest学习4-fixtures
源码注释: def fixture(scope="function", params=None, autouse=False, ids=None, name=None): &quo ...
- 苹果cms10 官方QQ微信防红防封代码
代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...
- 通过属性选择器找元素,可以通过$(__).length是否为0来判断是否找到了元素
通过属性选择器找元素,可以通过$("").length是否为0来判断是否找到了元素. 为0的时候表示没有找到,其余则返回找到了多少个. 不能通过$("")是否为 ...
- jquery使用ajax实现实时刷新,轮询
来自:https://blog.csdn.net/qq_25406669/article/details/78343082 var isLoaded = false; function reqs() ...
- Redis Distributed lock
using StackExchange.Redis; using System; using System.Collections.Generic; using System.Linq; using ...