参考:

https://www.cnblogs.com/linxiyue/p/3659448.html?utm_source=tuicool&utm_medium=referral

class Node:
def __init__(self,key):
self.key=key
self.left=None
self.right=None
self.height=0
class AVLTree:
def __init__(self):
self.root=None def find(self,key):
if self.root is None:
return None
else:
return self._find(key,self.root)
def _find(self,key,node):
if node is None:
return None
elif key<node.key:
return self._find(key,self.left)
elif key>node.key:
return self._find(key,self.right)
else:
return node def findMin(self):
if self.root is None:
return None
else:
return self._findMin(self.root) def _findMin(self,node):
if node.left:
return self._findMin(node.left)
else:
return node def findMax(self):
if self.root is None:
return None
else:
return self._findMax(self.root) def _findMax(self,node):
if node.right:
return self._findMax(node.right)
else:
return node def height(self,node):
if node is None:
return -1
else:
return node.height #前序遍历
def Preorder(self):
if self.root:
self.preorder(self.root)
print() def preorder(self,node):
if node:
print(node.key,end="")
self.preorder(node.left)
self.preorder(node.right) #右旋
def rotate_right(self,node):
k=node.left
node.left=k.right
k.right=node
node.height=max(self.height(node.left),self.height(node.right))+1
k.height=max(self.height(k.left),node.height)+1
return k #左旋
def rotate_left(self,node):
k=node.right
node.right=k.left
k.left=node
node.height=max(self.height(node.left),self.height(node.right))+1
k.height=max(self.height(k.right),node.height)+1
return k #左右双旋
def rotate_le_ri(self,node):
node.left=self.rotate_left(node.left)
return self.rotate_right(node) #右左双旋
def rotate_ri_le(self,node):
node.right=self.rotate_right(node.right)
return self.rotate_left(node) def Insert(self,key):
if self.root is None:
self.root=Node(key)
else:
self.root=self.insert(key,self.root) def insert(self,key,node):
if not node:
node=Node(key)
elif key<node.key:
node.left=self.insert(key,node.left)
if self.height(node.left)-self.height(node.right)==2:
if key<node.left.key:
#左左
node=self.rotate_right(node)
else:
#左右
node=self.rotate_le_ri(node)
elif key>node.key:
node.right=self.insert(key,node.right)
if self.height(node.right)-self.height(node.left)==2:
if key>node.right.key:
node=self.rotate_left(node)
else:
node=self.rotate_ri_le(node)
node.height=max(self.height(node.left),self.height(node.right))+1
return node def Remove(self,key):
if self.root is None:
raise KeyError("No such key found!")
else:
self.root=self.remove(key,self.root) def remove(self,key,node):
if node is None:
print("No such key found!")
elif key<node.key:
node.left=self.remove(key,node.left)
if self.height(node.right)-self.height(node.left)==2:
if self.height(node.right.right)>=self.height(node.right.left):
node=self.rotate_left(node)
else:
node=self.rotate_ri_le(node)
node.height=max(self.height(node.left),self.height(node.right))+1
elif key>node.key:
node.right=self.remove(key,node.right)
if self.height(node.left)-self.height(node.right)==2:
if self.height(node.left.right)>self.height(node.left.left):
node=self.rotate_le_ri(node)
else:
node=self.rotate_right(node)
node.height=max(self.height(node.left),self.height(node.right))+1
elif node.left and node.right:
#左右孩子都有
if self.height(node.left)>=self.height(node.right):
#左比右高,那么右子树找最小的放上来做根
k=self._findMin(node.right)
node.key=k.key
node.right=self.remove(k.key,node.right)
else:
#左比右低,那么左子树找最大的放上来做根
k=self._findMax(node.left)
node.key=k.key
node.left=self.remove(k.key,node.left)
node.height=max(self.height(node.left),self.height(node.right))+1
else:
#只有左孩子或右孩子或都没有
if node.left:
node=node.left
else:
#叶子节点也算在此情况
node=node.right
return node

说实话用python写类写的头疼,self真的多,不如写C+省事点

下面测试语句

p=AVLTree()
p.Insert(5)
p.Preorder()
p.Insert(4)
p.Preorder()
p.Insert(6)
p.Preorder()
p.Insert(1)
p.Preorder()
p.Insert(3)
p.Preorder()
p.Remove(6)
p.Preorder()

效果:

Python实现AVL树的更多相关文章

  1. AVL树Python实现(使用递推实现添加与删除)

    # coding=utf-8 # AVL树的Python实现(树的节点中包含了指向父节点的指针) def get_height(node): return node.height if node el ...

  2. AVL树Python实现

    # coding=utf-8 # AVL树Python实现 def get_height(node): return node.height if node else -1 def tree_mini ...

  3. AVL树的python实现

    AVL树是带有平衡条件的二叉查找树,一般要求每个节点的左子树和右子树的高度最多差1(空树的高度定义为-1). 在高度为h的AVL树中,最少的节点数S(h)由S(h)=S(h-1)+S(h-2)+1得出 ...

  4. AVL树插入(Python实现)

    建立AVL树 class AVLNode(object): def __init__(self,data): self.data = data self.lchild = None self.rchi ...

  5. python常用算法(5)——树,二叉树与AVL树

    1,树 树是一种非常重要的非线性数据结构,直观的看,它是数据元素(在树中称为节点)按分支关系组织起来的结构,很像自然界中树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形 ...

  6. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

  7. AVL树探秘

    本文首发于我的公众号 Linux云计算网络(id: cloud_dev) ,专注于干货分享,号内有 10T 书籍和视频资源,后台回复 「1024」 即可领取,欢迎大家关注,二维码文末可以扫. 一.AV ...

  8. 数据结构中的树(二叉树、二叉搜索树、AVL树)

    数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有 ...

  9. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

随机推荐

  1. Qt多线程实现思路二

    建立一个继承于Qobject的类myThread 在类myThread中定义线程处理函数不必是思路一里的run(); 在窗口类中开辟一个自定义线程myThread的指针对象myT = new myTh ...

  2. C语言实现 循环队列

    #include <stdio.h>#include <stdlib.h>#include <stdbool.h> typedef struct queue{ in ...

  3. C# GZip Compress DeCompress

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  4. python3-cookbook笔记:第一章 数据结构和算法

    python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...

  5. HTML5 表单学习

    创建表单的方法: 用form标签 form标签常用元素:input:单行表单.select:下拉式表单.textarea:多行文本域 input元素的type属性:text:文本属性.checkbox ...

  6. ElementUI的el-table的多选的取消选择和筛选的取消所有过滤器之ref冲突问题

    写此文的缘由:现如今,网络上,没有同下的解释形式(或者在外网,所以我没找到,或者大佬觉得太简单所以不屑解释).然而,我认为这是对VUE+ElementUI的底层框架的理解深入化问题.(为什么要深入理解 ...

  7. 洛谷P 1427 小鱼的数字游戏

    题目描述 小鱼最近被要求参加一个数字游戏,要求它把看到的一串数字(长度不一定,以0结束,最多不超过100个,数字不超过2^32-1),记住了然后反着念出来(表示结束的数字0就不要念出来了).这对小鱼的 ...

  8. Spring IoC详解

    Spring IoC详解 1. 控制反转 控制反转是一种通过描述(XML或者注解)并通过第三方去产生或获取特定对象的方式.在Spring中实现控制反转的是IoC容器,其实现方法是依赖注入(Depend ...

  9. (填坑系列) 用aio写server与client进行通信的坑

    最近闲来无事,就估摸着自己写个“服务注册中心”来玩,当然因为是个人写的,所以一般都是简洁版本. 代码地址在:https://gitee.com/zhxs_code/my-service-registe ...

  10. 申请一个美国paypal账户

    近期为了做PayPal支付,进口demo已经写好,就差一个美国PayPal账户进行支付测试,几经折腾,终于申请下来,附上参考链接:   paypal官网: https://www.paypal.com ...