Logarithmic-Trigonometric积分系列(一)
\[\Large\displaystyle \int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x\]
\(\Large\mathbf{Solution:}\)
Tools Needed
\[\frac{1}{k\left ( j- k \right )^{2}}=\frac{1}{j^{2}k}-\frac{1}{j^{2}\left ( k- j \right )}+\frac{1}{j\left ( k- j \right )^{2}}\]
\[\frac{1}{k\left ( j+ k \right )^{2}}=\frac{1}{j^{2}k}-\frac{1}{j^{2}\left ( k+ j \right )}-\frac{1}{j\left ( k+j \right )^{2}}\]
\[\ln\left ( \sin x \right )=-\ln 2-\sum_{k=1}^{\infty }\frac{\cos\left ( 2kx \right )}{k}\]
\[\ln\left ( \cos x \right )=-\ln 2-\sum_{k=1}^{\infty }\left ( -1 \right )^{k}\frac{\cos\left ( 2kx \right )}{k}\]
\[\cos\left ( 2jx \right )\cos\left ( 2kx \right )=\frac{1}{2}\left [ \cos\left ( 2\left ( j-k \right )x \right )+\cos\left ( 2\left ( j+k \right )x \right ) \right ]\]
\[\int_{0}^{\frac{\pi }{2}}x^{2}\cos\left ( 2kx \right )\mathrm{d}x=\begin{cases}
\left ( -1 \right )^{k}\displaystyle \frac{\pi }{4k^{2}}& \text{ if } k\neq 0 \\
\displaystyle \frac{\pi ^{3}}{24}& \text{ if } k=0
\end{cases}\]
Tool Use
\[\begin{align*}
&\int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x \\
&=\int_{0}^{\frac{\pi }{2}}x^{2}\left ( \ln 2+\sum_{k=1}^{\infty }\frac{\cos\left ( 2kx \right )}{k} \right )\left ( \ln 2+\sum_{k=1}^{\infty }\left ( -1 \right )^{k}\frac{\cos\left ( 2kx \right )}{k} \right )\mathrm{d}x \\
&=\ln^{2}2 \int_{0}^{\frac{\pi }{2}}x^{2}\mathrm{d}x+\ln 2\sum_{k=1}^{\infty }\frac{1}{k}\int_{0}^{\frac{\pi }{2}}x^{2}\cos\left ( 4kx \right )\mathrm{d}x\\
&~~~+\sum_{j=1}^{\infty }\sum_{k=1}^{\infty }\frac{\left ( -1 \right )^{k}}{2jk}\int_{0}^{\frac{\pi }{2}}x^{2}\left [ \cos\left ( 2\left ( j-k \right )x \right )+\cos\left ( 2\left ( j+k \right )x \right ) \right ]\mathrm{d}x \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=1}^{j-1}\frac{1}{k\left ( j-k \right )^{2}}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j^{2}}\frac{\pi ^{2}}{6}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=j+1}^{\infty }\frac{1}{k\left ( j-k \right )^{2}} \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=1}^{\infty }\frac{1}{k\left ( j+k \right )^{2}} \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{2}{j^{2}}H_{j-1}+\frac{1}{j}H_{j-1}^{\left ( 2 \right )} \right )-\frac{\pi ^{5}}{576}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( -\frac{1}{j^{2}}H_{j}+\frac{1}{j}\frac{\pi ^{2}}{6} \right )\\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{1}{j^{2}}H_{j}-\frac{1}{j}\frac{\pi ^{2}}{6}+\frac{1}{j}H_{j}^{\left ( 2 \right )} \right ) \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{2}{j^{2}}H_{j}+\frac{2}{j}H_{j}^{\left ( 2 \right )}-\frac{3}{j^{3}} \right )-\frac{\pi ^{5}}{576} \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right )+\frac{11\pi ^{5}}{5760}+\frac{\pi }{4}\sum \left ( -1 \right )^{j}\left ( \frac{1}{j^{3}}H_{j}+\frac{1}{j^{2}}H_{j}^{\left ( 2 \right )} \right ) \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right )-\frac{\pi ^{5}}{960}-\frac{\pi }{16}\sum_{j=1}^{\infty }\frac{H_{2j}}{j^{3}}
\end{align*}\]
Using the known result
\[\sum_{n=1}^{\infty }\frac{H_{2n}}{n^{3}}=-\frac{\pi ^{4}}{15}-\frac{1}{3}\pi ^{2}\ln^{2}2+\frac{\ln^{4}2}{3}+8\mathrm{Li}_{4}\left ( \frac{1}{2} \right )+7\ln 2\zeta \left ( 3 \right )\]
So here is the final result:
\[\Large\boxed{\displaystyle \begin{align*}
\int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x&=\color{blue}{\frac{\pi ^{3}}{16}\ln^{2}2+\frac{\pi ^{5}}{320}-\frac{3}{8}\ln 2\zeta \left ( 3 \right )}\\
&~~~\color{blue}{-\frac{\pi }{48}\ln^{4}2-\frac{1}{2}\mathrm{Li}_{4}\left ( \frac{1}{2} \right )}
\end{align*}}\]
Logarithmic-Trigonometric积分系列(一)的更多相关文章
- Logarithmic-Trigonometric积分系列(二)
\[\Large\displaystyle \int_0^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x\] \(\Large\mathbf{Solu ...
- .Net中的AOP系列之构建一个汽车租赁应用
返回<.Net中的AOP>系列学习总目录 本篇目录 开始一个新项目 没有AOP的生活 变更的代价 使用AOP重构 本系列的源码本人已托管于Coding上:点击查看. 本系列的实验环境:VS ...
- JavaScript学习笔记5 之 计时器 & scroll、offset、client系列属性 & 图片无缝滚动
一.计时器 setInterval ( 函数/名称 , 毫秒数 )表示每经过一定的毫秒后,执行一次相应的函数(重复) setTimeout ( 函数/名称 , 毫秒数 ) 表示经过一定的毫秒后,只执行 ...
- 算法系列:FFT 001
转载自http://blog.csdn.net/orbit/article/details/17210461 2012年9月的时候,一个南京的大学生从电视台播放的一段记者采访360总裁周鸿祎的视频中破 ...
- Aoite 系列(04) - 强劲的 CommandModel 开发模式(上篇)
Aoite 是一个适于任何 .Net Framework 4.0+ 项目的快速开发整体解决方案.Aoite.CommandModel 是一种开发模式,我把它成为"命令模型",这是一 ...
- C#微信公众号开发系列教程五(接收事件推送与消息排重)
微信公众号开发系列教程一(调试环境部署) 微信公众号开发系列教程一(调试环境部署续:vs远程调试) C#微信公众号开发系列教程二(新手接入指南) C#微信公众号开发系列教程三(消息体签名及加解密) C ...
- Oracle学习系列1-7
Oracle学习系列1 两个服务必须启动: OracleOraDb10g*TNListener 和 OracleService*** 使用sqlplusw先进行环境的设置 set linesize 3 ...
- Oracle学习系列6
Oracle学习系列6 ************************************************************************************ 删除约 ...
- 程序世界系列之-struts2安全漏洞引发的安全杂谈(上)
目录: 1.讨论关于struts 安全问题. 2.黑客文化. 3.如何降低安全漏洞的出现. 4.忠告建议. 题记: 这篇文章本来很早应该和大家见面的,中间由于个人原因调整了系列文章发布时间,实属罪过. ...
随机推荐
- Win7最后一天,微软开始慌了!
就在昨天(2020年1月14日),服役十年的Win 7正式退出了微软舞台,从2009推出到2019,这十年也是很多90后的青春. 当然微软官方也做了送别,当然其目的也是为了推广Win10! 甚至面对痛 ...
- 论文阅读笔记(四)【TIP2017】:Video-Based Pedestrian Re-Identification by Adaptive Spatio-Temporal Appearance Model
Introduction (1)背景知识: ① 人脸识别是具有高可靠性的生物识别技术,但在低解析度(resolution)和姿态变化下效果很差. ② 步态(gait)是全身行为的生物识别特征,大部分步 ...
- Web 开发人员推荐的通用独立 UI 组件
现代 Web 开发在将体验和功能做到极致的同时,对于美观的追求也越来越高.在推荐完图形库之后,再来推荐一些精品的独立 UI 组件.这些组件可组合在一起,形成美观而交互强大的 Web UI . 给 We ...
- [NOI2014] 魔法森林 - Link Cut Tree
[NOI2014] 魔法森林 Description 给定一张图,每条边 \(i\) 的权为 \((a_i,b_i)\), 求一条 \(1 \sim n\) 路径,最小化 \(\max_{i\in P ...
- 操作系统-多用户如何理解(Linux)
单用户.多用户.单任务.多任务,这么多种操作系统容易让人迷糊.其实这种初看你会觉得理解了一点,但其实你仔细研究会发现,多用户到底讲的是什么鬼? 多任务比较简单,就是应用程序都要放置到内存上去给CPU调 ...
- Java必须知道的知识点
junit用法,before,beforeClass,after, afterClass的执行顺序 分布式锁 nginx的请求转发算法,如何配置根据权重转发 用hashmap实现redis有什么问题( ...
- python 自动化实现定时发送html报告到邮箱
# coding =utf-8 import os import unittest import time import datetime import smtplib from email.mime ...
- mysql时间戳详解及运用
1.在已有表cms_nrgl_st 增加时间戳,这个时间是当前时间精确到秒的 alter table cms_nrgl_st add time_stamp TIMESTAMP DEFAULT CURR ...
- Jquery拖拽,拖动排序插件
上github搜jquery-sortable <!-- jq拖拽排序 --> <script src="${contextPath}/static/excelTable/ ...
- AcWing 104. 货仓选址
#include <iostream> #include <algorithm> using namespace std; ; int n; int q[N]; int mai ...