洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$。
开始开心(自闭)化简:
$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$
=$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{d}[gcd(i,j)==d]$
=$\sum_{d=1}^{n}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}ijd[gcd(i,j)==1]$
=$\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\mu(i)i^2S({\lfloor \frac{n}{id}\rfloor})S({\lfloor \frac{m}{id}\rfloor}),S(n)=(n+1)*n/2$
=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})S({\lfloor \frac{m}{T}\rfloor})\sum_{d|T}d(\frac{T}{d})^2\mu(\frac{T}{d})$
=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})S({\lfloor \frac{m}{T}\rfloor})T\sum_{d|T}(\frac{T}{d})\mu(\frac{T}{d})$
令$F(T)=T\sum_{d|T}(\frac{T}{d})\mu(\frac{T}{d})$
只需要预处理F的前缀和,前面整除分块问题就解决了。
$F(1)=1,F(p^c)=\mu(1)*1+\mu(p)*p=1-p$
可以知道F是一个积性函数,对T进行质因数分解,即可求得F(T),可以在筛质数的时候进行求解,具体看代码。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e7+;
const int MD=;
bool p[N];
int pri[N],f[N],tot;
void init() {
f[]=;
for(int i=;i<N;i++) {
if(!p[i]) pri[tot++]=i,f[i]=-i+MD;
for(int j=;j<tot&&i*pri[j]<N;j++) {
p[i*pri[j]]=true;
if(i%pri[j]==) {
f[i*pri[j]]=f[i];
break;
}
else f[i*pri[j]]=1LL*f[i]*f[pri[j]]%MD;
}
}
for(int i=;i<N;i++) f[i]=1LL*f[i]*i%MD;
for(int i=;i<N;i++) f[i]=(f[i]+f[i-])%MD;
}
int cal(int x) {
return 1LL*x*(x+)/%MD;
}
int main() {
init();
int n,m;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
int ans=;
for(int l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans=(ans+1LL*(f[r]-f[l-]+MD)*cal(n/l)%MD*cal(m/l)%MD)%MD;
}
printf("%d\n",ans);
return ;
}
洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)的更多相关文章
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...
- 洛谷P1829 [国家集训队]Crash的数字表格
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
随机推荐
- 解读Python中 locals() 和 globals() 内置函数
首先globals() 和 locals() 是作用于作用域下的内置函数,所以我将它们分为作用域类型的内置函数 1.作用域相关: 1)globals() # 返回全局作用域中的所有名字 2)local ...
- LINUX查询登录主机的用户工具:w 、who 、users
w.who和users工具,是查询已登录当前主机的用户:另外finger -s 也同样能查询:侧重点不一样:请自己对比着看:毕竟简单,这里只是介绍 : [beinan@localhost ~]$ w ...
- 初学linux时遇到的那些哭笑不得的问题
1.终端中无法输入密码? 在终端输入密码,是不会在输入密码的时候看见星号或者圆点符号的.它不会有任何输入密码的视觉指示,也不会有任何光标移动,什么也不显示. 其实是输进去了,只是没有明文显示出来而已. ...
- uwsgi: invalid option -- 'x'
安装:pip install uwsgi 启动:uwsgi -x 'uwsgi.xml'报错:uwsgi: invalid option -- 'x' 原因:centos下,在没有安装libxml2时 ...
- float示例
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- [转]js作用域系列——内部原理
前面的话 javascript拥有一套设计良好的规则来存储变量,并且之后可以方便地找到这些变量,这套规则被称为作用域.作用域貌似简单,实则复杂,由于作用域与this机制非常容易混淆,使得理解作用域的原 ...
- Java中字符串为什么不以\0结尾
Java中字符串为什么不以\0结尾 其实这个问题没有什么好说的,Java里面一切都是对象,是对象的话,字符串肯定就有长度,即然有长度,编译器就可以确定要输出的字符个数,当然也就没有必要去浪费那1字节的 ...
- 【JZOJ5363】【NOIP2017提高A组模拟9.14】生命之树 Trie+启发式合并
题面 45 在比赛中,我只想到了45分的暴力. 对于一个树中点对,相当于在他们的LCA及其祖先加上这个点对的贡献. 那么这个可以用dfs序+树状数组来维护. 100 想法 我想到了可能要用trie树来 ...
- 常用命令4-文件搜索命令 2- which
大家发现,cd 使用whereis和使用which都找不到他所在位置.是因为cd是linux的shell内置命令.那什么是shell,就是当前咱们操作界面.咱们看到的ls等命令都是通过外部安装的,所以 ...
- spring boot自动配置之jdbc(转)
1.DataSource配置 1.1 默认配置application.xml spring.datasource.url=jdbc:mysql://localhost/test spring.data ...